2007 Virginia Concrete Conference

Highlights of the new ME Design Procedure for Concrete Pavements

Mechanistic-Empirical Pavement Design Guide??
• The Design Guide represents a major change in the way we do design. It brings the designer closer to reality and considers traffic, structural features, materials, construction, and climate far more than ever before.
• This means the designer now will be more involved in the design and expected performance of pavements.

Limitations AASHTO Loadings

1972 AASHTO Interim Guide for the Design of Pavement Structures
• “While the Guides were under evaluation, AASHO initiated research studies within NCHRP for the purpose of developing a more theoretical or “rational” method for structural design of highway pavements.”

What’s Being Used (2003 survey)

The “Rational Method” gets a push
• Process initiated by Joint Task Force on Pavements
 - Irvine, California: March 1996
• Development of the 2002 Guide for Design of New and Rehabilitated Pavement Structures
 - NCHRP 1-37A
 - Awarded to ARA: February 1998
 - Product Submitted: February 2004
 - Cost $7 million

<table>
<thead>
<tr>
<th>Design Procedures</th>
<th>DOTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972 AASHTO Guide</td>
<td>3</td>
</tr>
<tr>
<td>1986 AASHTO Guide</td>
<td>2</td>
</tr>
<tr>
<td>1993 AASHTO Guide</td>
<td>26</td>
</tr>
<tr>
<td>Agency’s own pavement design guide or combination of AASHTO/Agency design procedures</td>
<td>17</td>
</tr>
</tbody>
</table>
What is Mechanistic Design?

- Fundamental Engineering Theories and Material Properties used to calculate critical strains in the pavement due to traffic load

\[\varepsilon_t \delta \]

NCHRP 1-37a Product Includes:

- Comprehensive Pavement Design Procedure
- Structural Analysis Software
- Available at: www.trb.org/mepdg/

Major Advantages of MEPDG

- Improved traffic characterization
- Ability to deal with changing load types

ESAL_{18k} Load Spectra

Materials

- Enhanced definition of material properties
- Relate material properties to performance
- Material Aging

Layer Coefficient Modulus

Climate

- Site specific climate considerations
 - Material properties effected by climate
 - PCC Joint openings, Curling / Warping

Extrapolated from Ottawa, IL 800 Weather Sites

The Big Picture

Climate Inputs

- Transfer Functions

Material Properties

- Predicted Performance

Mechanistic Analysis

Traffic
Empirical Portion of MEPDG

Predicted Performance vs. Observed Performance

β = Empirical Shift Factor

PCC Pavement Design Types

<table>
<thead>
<tr>
<th>Design Types</th>
<th>Pavement Types</th>
<th>PCC Property Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Construction</td>
<td>JPCP, CRCP</td>
<td>New PCC</td>
</tr>
<tr>
<td>Restoration</td>
<td>JPCP</td>
<td>Existing PCC</td>
</tr>
<tr>
<td>Rehabilitation (BCO/UBCO)</td>
<td>JPCP, CRCP</td>
<td>New and existing PCC</td>
</tr>
</tbody>
</table>

PCC Rehabilitation

- Not included in DG
 - CRCP Restoration
 - JRCP
 - Ultra-thin whitetopping

Levels of Input

- Level 1: Project Level Direct Testing
- Level 2: Correlation w/ Standard Test
- Level 3: Default Data

M-E Guide Outputs: Rigid

- Transverse Cracking
- Punchout
- Joint Faulting

PCC Material Properties for Design Inputs

- Design Guide requires inputs for PCC material properties in 4 groups
 - General Properties
 - Structural Properties
 - Thermal Properties
 - Shrinkage Properties
- Input requirements vary with pavement types and design input levels
General Properties

- PCC Unit Weight (ρ)
- Poisson’s Ratio (ν)

Thermal Properties

- Coefficient of Thermal Expansion
- Other Thermal Properties
 - Surface Short-Wave Absorptivity
 - Thermal Conductivity
 - Heat Capacity

Shrinkage Properties

- Ultimate Shrinkage
- Reversible Shrinkage
- Time to develop 50% of Ultimate Shrinkage

Slab Curling and Warping

- Slab wetter on top
 - Positive gradient
- Slab less wet on top
 - Negative gradient

Strength Properties

- Modulus of Elasticity
- Modulus of Rupture

Strength Properties

- Compressive Strength
Strength Properties

- Modulus of Rupture or Compressive Strength to predict Elastic Modulus

Using MEPDG for Design

- Iterative Process
- Use one or more distress predictions for failure criteria
- State specific guidance is necessary
 - Pavement Design Manual
 - Distress criteria and limits
 - Design parameters to change
- Do not throw out past experience

Inadequate Design

Adequate Design

Local Calibration for States

Do standards & materials differ from LTPP?
- Yes - Re-calibrate
- No - Confirm national results

How?
- Database of materials properties (confirm level 2 inputs)
- Database of default values (confirm level 3 inputs)
- Use LTPP as a starting point
- Add performance data available in the local area

Using MEPDG for Design

- Develop catalog of input values or files
- Guidance on use of Default values
 - Is it important?
 - Can I test it?
 - Will I test it?
- Design catalogs are an option
- Have a in-house expert
Major Advantages

- Modular system that allows for incremental enhancement
- Produces a more reliable design
- No longer dependent on the extrapolation of out-dated empirical relationships
- Excellent for forensic analysis
 - Answers “What if.....” questions

Integration

Pavement Design
Materials Selection
Communication
Pavement Management
Construction

Connection to Innovative Contracting

- Warranty
- Performance Related Specifications
- LCCA
- Design / Build
- Dispute Resolution Analysis

Longer Term Goals

- All pavement design systems need:
 - Quality Materials Characterization
 - Quality Traffic Data
 - Calibrated to local conditions
- The MEPDG is one tool for a designer
 - Focused on the structural design aspects
 - Has limitations

Questions

- www.trb.org/mepdg
- www.fhwa.dot.gov/pavement

Gary Crawford
Federal Highway Administration
(202) 366-1286
gary.crawford@dot.gov