Open Spandrel Concrete Arches
New and Old
Introduction

• William M. (Bill) Davidge IV, P.E.
• Vice President - Wiley & Wilson, Inc.
• Education
 – B.S. Civil Engineering - 1973
 University of Virginia
 – M.S. Structural Engineering - 1977
 George Washington University
• Professional Registration
 – Professional Engineer
 • VA, MD, CA, NC
• Professional Organizations
 – American Society of Civil Engineers
 – National Society of Professional Engineers
 – Virginia Society of Professional Engineers
 – Joint ASCE/ACI Committee on Concrete Bridge Design
 – Virginia Section - Institute of Transportation Engineers
Agenda

- Purpose & Need
- Project Constraints
- The Original Luten Bridge
- The General Design Solution
- The Bridge Design Solution
- Aesthetics
- Project Status/Conclusion
- Questions and Answers
Project Purpose & Need

• Condition of Bridge Structure
Project Purpose & Need

- Destructive Testing Program
 - 34 Compression Test Cores Taken in Arches & Piers
 - 6 Splitting Tensile Strength Tests for Arches & Piers
 - 54 Chloride Tests in Arches & Piers
 - Petrographic Analysis
Project Purpose & Need

- Traffic
 - TRAFNETSIM Model
 - Main Street/Riverside Drive Intersection
 - Main St. Is Downtown Thoroughfare
 - Riverside Dr. (Rte. 58) Is Main East-West Corridor for Southside Virginia
 - Requires 2-Thru + Left and Right Turn Lanes on Each of 4 Legs
• Surrounding Historic Resources

Project Constraints
Project Constraints

• Existing Grid of City Streets
The Original Luten Bridge
The Original Luten Bridge

- Backdrop of Historic Danville
 - Cotton Milling Industry
 - Began 1820’s
 - 7 Mills Established Here in late 1800’s
 - Mill Housing
 - Tail Races Here Served Other Businesses
 - Canals Here Used for Transport

- Other Bridges on this Site
 - Wood Covered Bridge Built 1851, Replaced 1887
 - Theodore Cooper “Iron” Truss (Fireproof) Built 1887, Burned 1927
The Original Luten Bridge

- Daniel B. Luten, Bridge Designer
 - Indianapolis, Indiana
 - Prolific & Well Known Engineer
 - Held 50 Patents, First Dated 1912
 - Pioneered Open Spandrel Arch Construction
 - Marketed to Municipalities
 - Marketed to Replace Metal/Timber Structures (Fire, Wear & Flood Resistant)
 - Built Bridges in 45 States + Overseas
The Original Luten Bridge

- Construction of the Bridge
 - 1927
 - Concrete Steel Bridge Company
 Clarksville, West Virginia
 - Concrete Design Selected for
 Fire and Flood Resistance
 - High-Profile Designer Selected in
 Line With Danville’s Image
 (Notable Others Included
 Concrete Building Designers
 Julius Kahn & Claude A.P.
 Turner)
The Original Luten Bridge

- 7 Spans
- 840 Feet Long
The Original Luten Bridge - Function

- Cross Section
 - 2 Arches
 - 4 Spandrel Columns
 - 44.5 Feet Curb-To-Curb
 - 2 – 5 Foot Sidewalks
 - Trolley Tracks
The Original Luten Bridge-Function

- Existing Configuration
The Original Luten Bridge - Structure

- Piers & Foundations
 - Founded on Granite Bedrock
The Original Luten Bridge - Structure

- Abutments
 - Incorporate Old Mill Race Walls
The Original Luten Bridge - Structure

• Arches – 3 Radii
The Original Luten Bridge - Structure

• Arches
 – Pairs
 – Variable Thickness
The Original Luten Bridge - Structure

• Arches
The Original Luten Bridge
-Structure

- Spandrel Columns
 12” X 18”
The Original Luten Bridge - Structure

- Floor Framing
 - Continuous, Cantilevered Cross-Beams
 - Deck Spanning Parallel to the Direction of Traffic
The Original Luten Bridge - Structure

- Deck, Overlay & Sidewalk
The Original Luten Bridge - Structure

• Railings & Lighting
The Design Solution
• Location Alternatives

The General Design Solution
• Design Configuration
• Maintenance of Traffic During Construction
The Bridge Design Solution
-Renovation of the Original Bridge
• Rehabilitation of Arches and Piers

The Bridge Design Solution
-Renovation of the Original Bridge
• Replacement Above Arches
 – Cast-In-Place Concrete

The Bridge Design Solution
-Renovation of the Original Bridge
• Floor System – Beams and Deck

The Bridge Design Solution
-Renovation of the Original Bridge
• Floor System – Concrete Formwork

The Bridge Design Solution
-Renovation of the Original Bridge
• Temperature Considerations/Deck Joints

The Bridge Design Solution
-Renovation of the Original Bridge
• Deck Drainage

The Bridge Design Solution
-Renovation of the Original Bridge
The Bridge Design Solution
-Renovation of the Original Bridge

• Railings & Sidewalk
 – Texas Design With Alterations
 – Crash Tested
• Lighting
 – Period Lighting Fixtures
 Consistent with City Standard

The Bridge Design Solution
-Renovation of the Original Bridge
The Bridge Design Solution

-New Bridge
• Foundations & Substructure

The Bridge Design Solution
- New Bridge
• Arches
 – Uniform Radius
 – 2-Piece
 – Precast Channels
 – Post Tensioned at Crown

The Bridge Design Solution
-New Bridge
• Arches
 – Staged Construction

The Bridge Design Solution
-New Bridge
• Arches - Staged Construction

The Bridge Design Solution
- New Bridge

Stage I Construction

2. Construct abutment A, pier 1, pier 2, and pier 3 to the construction joints, 2” below spring line.
3. Connect arch ribs at crown in spans a, b, and c in succession.
4. Infill arch ribs in spans a, b, and c in succession.
5. Complete abutment A, pier 1, and pier 2 construction.
6. Construct superstructure in spans a and b in succession.
The Bridge Design Solution
-New Bridge

- Floor System
 - AASHTO Type III Girders
 - Utility Supports
• Above Deck Items

The Bridge Design Solution
-New Bridge
Aesthetics
Aesthetics
-Elements in Common

• Arch Spans
• Span Arrangement
Aesthetics - Elements in Common

- Railing
- Lighting
Aesthetics
-Elements in Contrast

• Arch Shape
Aesthetics
-Elements in Contrast

• Spandrels
Aesthetics
- Elements in Contrast

• Concrete Color
 – Davis “Mesa Buff” Color No. 5447
 – Dosage Rate: 3/8# per Bag

-- Done in combination With Concrete Cleaning (No Chemicals, Limited Nozzle Velocity)
Aesthetics
- Elements in Contrast

• Concrete Detailing
 – Fascia
Aesthetics
- Elements in Contrast

• Concrete Detailing
 – Pier Faces
Project Status/Conclusion

- Entire Project Opened to Traffic During Winter 2005/06
• June S. Baldwin, VDOT Overall Project Manager
• James M. Fariss, VDOT Bridge Project Manager
• S. Babu Nallamala, New Bridge Designer
• Karl Kratzer & Others from H. W. Lochner and JMA, Authors of the EA
• Claude Napier & Rudy Maruri, FHWA Bridge Engineers
• Les Daniel & Pettis Bond, Bridge Construction Engineers for VDOT
• A. L. Simpson & His VDOT/ Consultant Inspection Crew
• Jeff Beatty, Project Manager for GC Glade East
• Leonard Pharr, Superintendent for GC Glade East
Contact Information

• William M. Davidge IV, P.E. Vice President

• Wiley & Wilson, Inc.
 6606 West Broad Street, Ste. 500
 Richmond, VA 23230

• 804.254.6673 – phone
 804.254.7257 – fax

• bdavidge@wileywilson.com

• www.wileywilson.com
Questions & Answers