ERS
Route 5 Chickahominy Bridge

March 4, 2009
Celik Ozyildirim, Ph.D., P.E.
Principal Research Scientist

A partnership of the Virginia Department of Transportation and the University of Virginia since 1948
Outline

- ERS
- Pilot Projects
- Chickahominy Bridge
 - Trial batches
 - Control charts
ERS - Goals

- To have long lasting concrete structures
- Provide innovation
- Ensure consistent uniform concrete
- Pay based on the quality of concrete
ERS

Includes

• Prequalification
 QC Plan by the Contractor applicable to preconstruction and during construction
• Mix design approval
• Acceptance
Differences in Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Current</th>
<th>ERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix Design</td>
<td>Prescriptive</td>
<td>Performance Measures</td>
</tr>
<tr>
<td>Testing</td>
<td>VDOT</td>
<td>Contractor and VDOT</td>
</tr>
<tr>
<td>Basis of Pay</td>
<td>Minimum</td>
<td>PWL</td>
</tr>
</tbody>
</table>
First Phase Pilot Projects

Salem:
Route 11 over the New River and Norfolk Southern Railroad tracks near Radford University

Culpeper:
Route 28 near Manassas
Salem
Salem Mix Proportions

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount (lb/yd³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement Type I/II</td>
<td>318</td>
</tr>
<tr>
<td>Fly ash Class F</td>
<td>159</td>
</tr>
<tr>
<td>Slag</td>
<td>159</td>
</tr>
<tr>
<td>Fine aggregate</td>
<td>1101</td>
</tr>
<tr>
<td>Coarse aggregate</td>
<td>1755</td>
</tr>
<tr>
<td>w/cm</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Salem Strength and Permeability

<table>
<thead>
<tr>
<th></th>
<th>Average (psi)</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td>5016</td>
<td>305</td>
</tr>
<tr>
<td>Permeability</td>
<td>391</td>
<td>72</td>
</tr>
</tbody>
</table>

\[N=31 \]
Culpeper

03/04/2009
Second Phase Pilot Projects

- Structures in different districts
- Route 624
- Route 95
- Chincoteague Bridge
- Route 5 Chickahominy bridge
Route 624 over Cat Point Creek

In the same mixture

- Crushed stone and gravel.
- Water reducer and retarding admixture
Route 95 Widening Project

Curing Box with continuous recording

From: 22 August 2008 10:30:00 To: 23 August 2008 11:16:20
Chincoteague Bridge Bascule Footing
Chincoteague Bridge

• In A3 Mass Concrete minimum cementitious material content is 588 lb/yd³
• In this project used 539 lb/cy³ of cementitious material content with 30% Class F fly ash
Rte 5 over Chickahominy
Rte 5 over Chickahominy

Quality coarse aggregate did not meet #57
Combined Aggregate Gradation: #57+#78+Sand
Rte 5 over Chickahominy

Three trial batches with different cementitious material and w/cm
Rte 5 over Chickahominy

Three trial batches with different cementitious material and w/cm

Coarse aggregate does not meet #57; however, combined aggregate is considered.
Control Charts
Fresh Concrete

- Slump Results
- Air Content
- Unit Weight
- Temperature
Control Charts
Hardened Concrete

1. Compressive Strength (Avg)
2. Compressive Strength Moving Average (psi)
3. Coulombs (Avg)
4. Coulombs Moving Average
THANK YOU

March 4, 2009
Celik Ozyildirim, Ph.D., P.E.
Principal Research Scientist

A partnership of the Virginia Department of Transportation and the University of Virginia since 1948