CHAPTER 3
ACI CONCRETE MIX DESIGN AND
ALLOWABLE FIELD ADJUSTMENTS

ACI Concrete Mix Design

In 1963 the Virginia Department of Transportation realized that a definite need existed to adopt a standard method of concrete design. Contractors, Producers, and the Department itself had used many varying methods of concrete designs.

The Department has adopted the ACI absolute volume method of design, and requires that this method be used in the design of all normal weight concrete mixes.

Example: Absolute Volume = Weight

\[
\frac{\text{Weight}}{(\text{Sp. Gr.}) \times 62.4 \text{ lb/ft}^3}
\]

For purposes of establishing concrete proportions and calculating yields, we will not concern ourselves with bulk yield or bulk volumes of aggregate, cement, etc., but with the Absolute Volume of these materials. This means the volume of material is solid and without voids.

For example: 94 lbs. of cement in a bulk state occupies approximately 1 cubic foot of volume; however, the Absolute Volume of 94 lbs. of cement is only approximately 0.48 cubic feet. (This means the cement is consolidated without voids.) It is the latter volume which 94 lbs. of cement actually occupies in a batch of concrete.

As a further explanation, we will calculate the absolute volume occupied by cement in a cubic yard of concrete which contains 588 lbs. of cement.

EXAMPLE: The weight of cement is: 588 lbs. Cement has a specific gravity of 3.15 (this means cement is 3.15 times heavier than an equal volume of water)

A solid cubic foot of cement then weighs 3.15 \times 62.4 \text{ lb/ft}^3 \text{ of water} = 196.56 \text{ lb/ft}^3

So the Absolute Volume, or the space occupied by 588 lbs. of cement, will be:

\[
\frac{588 \text{ lb.}}{196.56 \text{ lb/ft}^3} = 2.99 \text{ ft}^3
\]

Before calculations can be started for a concrete design, there are certain items that must be known or available to the person doing the design work. Those items are as follows:

1. Class of concrete to be designed.
2. Fine aggregate: a. Specific gravity
 b. Fineness modulus
 b. Specific Gravity
 c. Unit Weight (dry rodded unit weight)

4. From VDOT Specifications: a. Cement factor (minimum cement content)
 b. W.C. ratio (maximum W/C ratio)
 c. Air content (mean air content)
 d. Nominal Maximum size aggregate

5. Other information: a. ACI Table A1.5.3.6 (volume of coarse aggregate per unit
 of volume of concrete) (Page 3-6)
 b. Type of cement and alkali content
 c. TL-27 (Concrete Mix Design Form) (Page 3-7)
 d. ACI Mix design work sheet may be used (Page 3-3)
 e. Source of all materials going into the mix

(For example purposes, the Fineness Modulus and Specific Gravity for all design problems
in this study guide are taken from the Aggregate Data Sheets on Pages 3-32 and 3-33. For
an updated list, please see the Aggregate Quality List, which is published annually in the
Materials Division Manual of Instruction.)

HELPFUL CONVERSION FACTORS

One cubic foot of water = 7.5 gallons = 62.4 lbs.
One bag of cement = 94 lbs. (42.6 kg)
Specific gravity of cement is 3.15
Specific gravity x 62.4 = Absolute Volume
1.308 cubic yards = One cubic meter
1 gallon of water = 8.33 lbs. = 3.78 liters
1 gallon per yard = 5 liters per meter
One cubic yard = 27 cubic feet
One bag of cement = one cubic foot (loose volume)
One bag of cement = 0.48 cubic feet (absolute volume)
ACI WORKSHEET

CLASS _______________ MIX DESIGN

MODIFIED WITH

FINE AGGREGATE
F.M. _______________ COARSE AGGREGATE
SP. GR. _______________ DRY RODDED UNIT WT. ___________
NOMINAL MAX. SIZE C.A. ________ TABLE A1.5.3.6 FACTOR ________

OTHER DATA NEEDED FOR SPECIAL DESIGNS ____________________________________

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 ___________ X 27 ft³ X UNIT WT. ___________ = ___________ lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT
3.15 x 62.4 lbs. = ___________ ft³

WATER
1.00 x 62.4 lbs. = ___________ ft³

AIR
100 x 27 = ___________ ft³

C. AGGR.
SP.GR._________ X 62.4 Lbs. = ___________ ft³

ADDITIONAL MATERIALS
= ___________ ft³

27.00 ft³
TOTAL = ___________ ft³

- ___________ ft³

F.A._________ ft³ X ___________ SP.GR. X 62.4 = ___________ lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT ___________ lbs.
WATER ___________ lbs. or ___________ gals.
AIR ___________ %
C. AGGR. ___________ Lbs. - [_________] + [_________]
F. AGGR. ___________ Lbs. - [_________] + [_________]
ADDL. MATLS. ___________ =
___________ =
<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>Design Min. Laboratory Compressive Strength at 28 days (f'c) (psi)</th>
<th>Aggregate Size No.</th>
<th>Design Max. Laboratory Permeability at 28 days (Coulombs)</th>
<th>Design Max. Laboratory Permeability at 28 days - Over tidal water (Coulombs)</th>
<th>Nominal Max. Aggregate Size (in)</th>
<th>Min. Grade Aggregate</th>
<th>Min. Cementitious Content (lb/cu.yd)</th>
<th>Max. Water/Cementitious Mat. (lb/Water/lb. Cement)</th>
<th>Consistency (in of slump)</th>
<th>Air Content (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5 Pre-stressed and other special designs</td>
<td>5,000 or as specified on plans</td>
<td>57 or 68</td>
<td>1,500</td>
<td>1,500</td>
<td>1</td>
<td>A</td>
<td>635</td>
<td>0.40</td>
<td>0-4</td>
<td>41/2 ± 1 1/2</td>
</tr>
<tr>
<td>A4 General</td>
<td>4,000</td>
<td>56 or 57</td>
<td>2,500</td>
<td>2,000</td>
<td>1</td>
<td>A</td>
<td>635</td>
<td>0.45</td>
<td>2-4</td>
<td>6 1/2 ± 11/2</td>
</tr>
<tr>
<td>A4 Posts & rails</td>
<td>4,000</td>
<td>7, 8 or 78</td>
<td>2,500</td>
<td>2,000</td>
<td>0.5</td>
<td>A</td>
<td>635</td>
<td>0.45</td>
<td>2-5</td>
<td>7 ± 2</td>
</tr>
<tr>
<td>A3 General</td>
<td>3,000</td>
<td>56 or 57</td>
<td>3,500</td>
<td>2,000</td>
<td>1</td>
<td>A</td>
<td>588</td>
<td>0.49</td>
<td>1-5</td>
<td>6 ± 2</td>
</tr>
<tr>
<td>A3a Paving</td>
<td>3,000</td>
<td>56 or 57</td>
<td>3,500</td>
<td>3,500</td>
<td>1</td>
<td>A</td>
<td>564</td>
<td>0.49</td>
<td>0-3</td>
<td>6 ± 2</td>
</tr>
<tr>
<td>A3b Paving</td>
<td>3,000</td>
<td>357</td>
<td>3,500</td>
<td>3,500</td>
<td>2</td>
<td>A</td>
<td>N.A.</td>
<td>0.49</td>
<td>0-3</td>
<td>6 ± 2</td>
</tr>
<tr>
<td>B2 Massive or lightly reinforced</td>
<td>2,200</td>
<td>57</td>
<td>N.A.</td>
<td>N.A.</td>
<td>1</td>
<td>B</td>
<td>494</td>
<td>0.58</td>
<td>0-4</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>C1 Massive Unreinforced</td>
<td>1,500</td>
<td>57</td>
<td>N.A.</td>
<td>N.A.</td>
<td>1</td>
<td>B</td>
<td>423</td>
<td>0.71</td>
<td>0-3</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>T3 Tremie seal</td>
<td>3,000</td>
<td>56 or 57</td>
<td>N.A.</td>
<td>N.A.</td>
<td>1</td>
<td>A</td>
<td>635</td>
<td>0.49</td>
<td>3-6</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>Latex Hydraulic cement concrete overlay</td>
<td>3,500</td>
<td>7, 8 or 78</td>
<td>1,500</td>
<td>1,500</td>
<td>0.5</td>
<td>A</td>
<td>658</td>
<td>0.40</td>
<td>4-6</td>
<td>5 ± 2</td>
</tr>
<tr>
<td>Silica fume, Silica fume/Class F fly ash or silica fume/slag concrete overlay</td>
<td>5,000</td>
<td>7, 8 or 78</td>
<td>1,500</td>
<td>1,500</td>
<td>0.5</td>
<td>A</td>
<td>658</td>
<td>0.40</td>
<td>4-7</td>
<td>6 ± 2</td>
</tr>
<tr>
<td>Class F fly ash or slag overlay</td>
<td>4,000</td>
<td>7, 8 or 78</td>
<td>1,500</td>
<td>1,500</td>
<td>0.5</td>
<td>A</td>
<td>658</td>
<td>0.40</td>
<td>4-7</td>
<td>6 ± 2</td>
</tr>
</tbody>
</table>
Footnotes

1 When a high-range water reducer is used, the target air content shall be increased 1% and the slump shall not exceed 7 inches.

2 When Class A5 concrete is used as the finished bridge deck riding surface, or when it is to be covered with asphalt concrete with or without waterproofing, the air content shall be 5½±1½%.

3 The latex modifier content shall be 3.5 gallons per bag of cement. Slump shall be measured approximately 4½ minutes after discharge from the mixer.

4 Silica fume with a minimum of 7% by weight of cementitious material; silica fume with a range of 2.5-5% shall be combined with Class F Fly Ash in range of 15-20% minimum cement of 77.5% by weight of cementitious material; silica fume with a range of 2.5-5% shall be combined with Ground Granulated Blast Furnace Slag in the range of 30-35% and a minimum cement of 67.5% by weight of cementitious material.

5 The permeability testing does not apply to small bridges identified on the bridge plans and to concrete structures and incidental concrete as described in Sections 219, 232, 302, 415, 502, 504, 506 and 519. Curing and testing of test cylinders for permeability will be in accordance with VTM-112.

6 The contractor may use different aggregate sizes or a combination of sizes to increase the coarse aggregate content of the concrete as approved by the Engineer. The maximum size of the coarse aggregate shall not exceed 2.5 inches.

Note: With the approval of the Engineer, the Contractor may substitute a higher class of concrete for that specified at the Contractor's expense.
<table>
<thead>
<tr>
<th>Nominal Maximum size of Aggregate</th>
<th>Volume of dry-rodded coarse aggregate * per unit volume of concrete for different fineness moduli** of fine aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>English</td>
</tr>
<tr>
<td>9.5 mm</td>
<td>3/8</td>
</tr>
<tr>
<td>12.5 mm</td>
<td>1/2</td>
</tr>
<tr>
<td>19.0 mm</td>
<td>3/4</td>
</tr>
<tr>
<td>25.0 mm</td>
<td>1</td>
</tr>
<tr>
<td>37.5 mm</td>
<td>1 1/2</td>
</tr>
<tr>
<td>50 mm</td>
<td>2</td>
</tr>
<tr>
<td>75 mm</td>
<td>3</td>
</tr>
<tr>
<td>150 mm</td>
<td>6</td>
</tr>
</tbody>
</table>

* Volumes are based on aggregates in dry-rodded condition as described in ASTM C 29

** See ASTM Method 136 for calculation of fineness modulus
VIRGINIA DEPARTMENT OF TRANSPORTATION
MATERIALS DIVISION

STATEMENT OF HYDRAULIC CEMENT CONCRETE MIX DESIGN

Submit one copy to the District Administrator, Virginia Department of Transportation. Approval must be received by the contractor from the Materials Division before work is begun. This mix design is approved for all projects of the Department for the class of concrete shown:

Calendar Year ___________ Mix Design No. ___________

Producer ___________________________ Plant Location ___________________________ Phone ___________________________ Job Mix ___________________________ Date ___________________________

Mix Design - One Cubic Yard (Meter) Based on SSD Condition

Class of Concrete ___________________________ (E) Slump/ _________ In. ___________ mm Air Content ___________ %
(M) Flow ___________________________

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Code/Name</th>
<th>Plant/Quarry Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>Type lbs. kg.</td>
<td>Code/Name</td>
<td>Plant/Quarry Location</td>
</tr>
<tr>
<td>Min.Admix.1</td>
<td>lbs. kg.</td>
<td>Code/Name</td>
<td>Plant/Quarry Location</td>
</tr>
<tr>
<td>Min.Admix.2</td>
<td>lbs. kg.</td>
<td>Code/Name</td>
<td>Plant/Quarry Location</td>
</tr>
<tr>
<td>Sand (1)</td>
<td>lbs. kg.</td>
<td>Code/Name</td>
<td>Plant/Quarry Location</td>
</tr>
<tr>
<td>No. Stone (1)</td>
<td>lbs. kg.</td>
<td>Code/Name</td>
<td>Plant/Quarry Location</td>
</tr>
<tr>
<td>Gr./No. Aggr. (1)</td>
<td>lbs. kg.</td>
<td>Code/Name</td>
<td>Plant/Quarry Location</td>
</tr>
<tr>
<td>Water (2)</td>
<td>lbs. gal. L.</td>
<td>Code/Name</td>
<td>Plant/Quarry Location</td>
</tr>
<tr>
<td>Admixture (AE) (3)</td>
<td>oz. ml.</td>
<td>Code/Name</td>
<td>Plant/Quarry Location</td>
</tr>
<tr>
<td>Admixture (Retarder) (3)</td>
<td>oz. ml.</td>
<td>Code/Name</td>
<td>Plant/Quarry Location</td>
</tr>
<tr>
<td>Admixture (Other) (3)</td>
<td>oz. ml.</td>
<td>Code/Name</td>
<td>Plant/Quarry Location</td>
</tr>
</tbody>
</table>

NOTES:

(1) The quantities of fine and coarse aggregates necessary to conform to specifications in regard to consistency and workability shall be determined by the method described in "Recommended Practice for Selecting Proportions for Normal Weight Concrete" (ACI-211.1) and the actual quantities used shall not deviate more than plus or minus 5 percent from such quantities.

(2) To provide minimum slump permissible in Table II-17 while satisfying placement and finishing requirements. A separate design shall be submitted for each slump desired.

(3) The quantity of admixture will not be approved or disapproved since it varies considerably and must be initially established by trial and error by the producer or contractor with subsequent adjustment during batching to maintain the desired results within the range specified.

Contractor ___________________________ (Name of Company) By ___________________________ (Certified Technician Preparing Form)

Producer Technician's Expiration Date ___________________________ (Do Not Use Social Security Number)

FOR DEPARTMENT USE ONLY

Remarks: ___________________________

Copies: District Materials Engineer
 Project Inspector
 Plant Inspector
 Sub-Contractor and / or R.M. Producer

Checked by ___________________________ Approved by ___________________________

District Materials Engineer

Approved tentatively subject to the production of material meeting the requirements of the Specifications and Special Provisions.
Mix designs must incorporate a mineral admixture. The amount of mineral admixture varies according to the alkali content of the cement and the type of mineral admixture selected for the concrete mix. Blended cements such as IP or IS already have mineral admixtures in them and don’t require any additional admixtures. Road and Bridge Specification Section 217.02(a) lists the percent replacement guidelines of cement with mineral admixtures based on the alkali content of the cement.

Section 217.02(a) Cementitious materials shall be a blend of mineral admixtures and Portland cement or a blended cement. In overlay concretes, expansive hydraulic cement is permitted in lieu of Portland cement. Portland cement (Types I, II, III) blended cements (Type IP, Type IS) or expansive cement (Type K) shall comply with Section 214. Flyash, ground granulated iron blast-furnace slag, silica fume or metakaolin shall conform to Section 215. As a portion of the cementitious material, Table 1 lists the minimum percents of specific pozzolans required by mass of the cementitious material depending on the alkali content of the cement. Any other mineral admixture or any other amount or combination of mineral admixtures may be used if approved by the Engineer. As a portion of the cementitious material, the fly ash content shall not exceed 30 percent for Class F, the ground granulated blast-furnace slag content shall not exceed 50 percent and the silica fume content shall not exceed 10 percent unless approved by the Engineer. Class C Flyash or other pozzolans may be used provided the contractor demonstrates that the percent usage of Class C Flyash or other pozzolans have a maximum expansion of 0.15% according to ASTM C227 at 56 days using borosilicate glass as aggregate. Blended cements require no further pozzolan additions to meet minimum pozzolan content to compensate for the alkali-silica reaction.

Up to 7 percent silica fume may be added to all combinations of cementitious materials to reduce early permeability without approval by the Engineer. Other silica fume additions must be approved by the Engineer.

Table 1 – Minimum percent pozzolan required by mass of cementitious material and are based upon the alkali content of the cement.

<table>
<thead>
<tr>
<th></th>
<th>Total Alkalies of Cement less than or equal to 0.75%</th>
<th>Total Alkalies of Cement greater than 0.75% and less than or equal to 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class F Flyash</td>
<td>20%</td>
<td>25%</td>
</tr>
<tr>
<td>GGBF Slag</td>
<td>40%</td>
<td>50%</td>
</tr>
<tr>
<td>Silica Fume</td>
<td>7%</td>
<td>10%</td>
</tr>
<tr>
<td>Metakaolin</td>
<td>7%</td>
<td>10%</td>
</tr>
</tbody>
</table>
EXAMPLE - Using the ACI worksheet provided, let us design a VDOT Class A-3 general use mix using Type IS cement. This mix will be for 1 yd3. No pozzolan will be added as Type IS is a blended cement.

Conditions:
Minimum Cement Content: 588 lbs. (Table II-17)
Maximum Water-cement ratio: 0.49 lb water per lb cement (Table II-17)
Nominal maximum size aggregate: 1 in (Table II-17)
Air Content: 6% ± 2% (Table II-17)
Slump: 1 – 5 in (Table II-17)
Fineness Modulus of Sand: 2.70 (fine aggr. data sheet)
Sp. Gr. of Fine Aggregate: 2.66 (fine aggr. data sheet)
Sp. Gr. of Coarse Aggregate: 2.61 (coarse aggr. data sheet)
Dry-rodded Unit Weight of C.A.: 104 lb/ft3 (lab results)
Sp. Gr. of Type IS Cement: 3.05 (from supplier)

There are five materials going into this mix:

1. Cement
2. Water
3. Air
4. Coarse Aggregate
5. Fine Aggregate

Solve for the Absolute Volume of each of the five materials in the mix. The combined volume must total one cubic yard (27.00 ft3).

Quantities for three of the five materials are given by the specification. These are:

1. Cement
2. Water
3. Air

This means then that you only have to solve for the quantities of two ingredients:

(1) Coarse aggregate, and (2) Fine Aggregate

Let us now solve the absolute volume of each material, remembering the total must be 27.00 cubic feet for all material.

1. **Cement**: 588 lb (by Spec.)
 \[
 \frac{588 \text{ lb}}{3.05 \text{ (sp.gr. cement)}} \times 62.4 \text{ (weight of 1 ft}^3\text{ of water)} = \]
 \[
 \frac{588}{3.05 \times 62.4} = 3.09 \text{ ft}^3 = \text{Absolute volume}
 \]

2. **Water**: By specifications, the maximum water is 0.49 lb water per lb cement. If the cement content for a yd3 is 588 lb, the maximum design water will be:
 \[
 588 \times 0.49 = 288 \text{ lbs.}
 \]
To find absolute volume:

\[
\frac{288}{1.00 \times 62.4} = 4.62 \text{ ft}^3 = \text{Absolute volume}
\]

4.62 ft\(^3\) x 7.5 (gallons of water in 1 ft\(^3\)) = 34.6 gallons

3. **Air**: The target air content is 6%. To find the absolute volume of air:

\[
0.06 \times 27 \text{ ft}^3 = 1.62 \text{ ft}^3 \quad (\text{Absolute Volume})
\]

As air will not weigh anything, it will not have a specific gravity, so we have solved for the 6% volume displaced by the air in a cubic yard. As we said previously, three of the five materials are given, namely:

1. Cement
2. Water, and
3. Air

Now, we must solve for coarse aggregate:

4. **Coarse Aggregate**: From Table A1.5.3.6 of ACI, the percent of the total mix that should be coarse aggregate is found by taking the 1 inch nominal maximum size aggregate designated by the specification, and locating it on the left side of the table. The F.M. of the sand is found across the top of Table A1.5.3.6. We said that the F.M. of the sand was 2.70. Across the top of the columns, we find 2.60 and 2.80. If the F.M. happens to be 2.70, we must interpolate the value of 2.70. In this case, the value will be half way between 0.69 (F.M. = 2.60) and 0.67 (F.M. = 2.80), which for 1 inch would be 0.68. So, 68% of the cubic yard mix will be coarse aggregate in a dry-rodded condition.

To convert this to volume:

\[
0.68 \times 27.0 \text{ ft}^3 = 18.36 \text{ ft}^3 \quad \text{(dry-rodded condition of the coarse aggregate)}
\]

To determine the weight of coarse aggregate going into the mix:

\[
18.36 \text{ ft}^3 \times 104 \text{ lb/ft}^3 = 1909 \text{ lbs.} \quad \text{(dry-rodded volume)}
\]

To determine the absolute volume:

\[
\frac{1909 \text{ lbs.}}{2.61 \times 62.4 \text{ lb/ft}^3} = 11.72 \text{ ft}^3 = \text{Absolute volume}
\]
5. **Fine Aggregate**: To solve for the amount of fine aggregate, work the problem in reverse as compared to the other materials. First, total the absolute volume of the other four materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Design</th>
<th>Absolute Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>588 lbs.</td>
<td>3.09 ft3</td>
</tr>
<tr>
<td>Water</td>
<td>288 lbs.</td>
<td>4.62 ft3</td>
</tr>
<tr>
<td>Air</td>
<td>6%</td>
<td>1.62 ft3</td>
</tr>
<tr>
<td>Coarse Aggregate</td>
<td>1909 lbs.</td>
<td>11.72 ft3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>21.05 ft3</td>
</tr>
</tbody>
</table>

If four materials total 21.05 ft3, it is proper to assume that the fine aggregate will fill the remaining volume of a cubic yard (27.00 ft3).

To find the volume the fine aggregate will occupy:

$$27.00 \text{ ft}^3 - 21.05 \text{ ft}^3 = 5.95 \text{ ft}^3$$

Now, multiply the volume of fine aggregate times specific gravity of fine aggregate times 62.4 (unit weight of water in lb/ft3):

$$5.95 \text{ ft}^3 \times 2.66 \times 62.4 = 988 \text{ lbs.}$$

This is the design weight of the fine aggregate.

The class A3 general use concrete mix design as shown on the TL-27 will be as follows:

- Cement: 588 lbs.
- Water: 288 lbs.
- Air: 6%
- Coarse aggregate: 1909 lbs.
- Fine Aggregate: 988 lbs.
ACI WORKSHEET
CLASS A3- General MIX DESIGN
MODIFIED WITH ____________

FINE AGGREGATE
F.M. ______ 2.70____
SP. GR. 2.66
c
NOMINAL MAX. SIZE C.A. 1"

COARSE AGGREGATE
DRY RODDED UNIT WT. 104__
SP. GR. 2.61
TABLE 5.3.6 FACTOR 0.68

OTHER DATA NEEDED FOR SPECIAL DESIGNS Sp. Gr. of IS 3.05 ____________

QUANTITY OF COARSE AGGREGATE
TABLE 5.3.6 0.68 X 27 ft³ X UNIT WT. 104 lb/ft³ = 1909 lbs.

ABSOLUTE VOLUMES

PORTLAND IS CEMENT 588 = 3.09 ft³

3.05 x 62.4

WATER 588 x 0.49 = 288 lbs. = 4.62 ft³

1.00 x 62.4

AIR 6 % x 27 = 1.62 ft³

100

C. AGGR. 1909 lbs. = 11.72 ft³

SP. GR. 2.61 x 62.4

ADDITIONAL MATERIALS ____________ = ____________ ft³

= ____________ ft³

TOTAL = 21.05 ft³

27.00 ft³

- 21.05 ft³

F.A. 5.95 ft³ X 2.66 SP.GR. X 62.4 = 988 lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT 588 lbs.

WATER 288 lbs. or 34.6 gals.

AIR 6 %

C. AGGR. 1909 lbs. - [_________] +[_________]

F. AGGR. 988 lbs. - [_________] + [_________]

ADDL. MATLS. = 1 lbs.

=
GRANULATED IRON BLAST FURNACE SLAG

Specification:

Shall conform to ASTM C989, Grade 100 or 120
Replaces up to 50% of the cement

Reaction:

Reactive within itself and also reacts with the free lime in the cement

Advantages:

- Cheaper than cement
- Utilization of a waste product
- Reduces heat of hydration (less cement)
- Improves sulfate resistance
- Reduces alkali-silica reaction
- Gives higher strength at later ages

Disadvantages:

- Another mixture
- Scaling and drying shrinkage may be increased
- Early strengths retarded, particularly in cool weather

Note: When forms are stripped, the concrete will be discolored with greens, blues, and blacks, like ink blots, but will bleach fairly rapidly.
ACI Concrete Mix Design Utilizing Ground Granulated Iron Blast-Furnace Slag

When Ground Granulated Blast-Furnace Slag is utilized as an additive in concrete, it must conform to the requirements of ASTM C 989, Grade 100 or 120.

Ground Granulated Blast-Furnace Slag shall not exceed 50 percent of the total design cement weight specified in Table II-17. The method of design is very similar to that used in the previous mix design in this section.

EXAMPLE: Using the ACI worksheet provided, let us design a VDOT A3 general use mix with slag.

Conditions:
Minimum Portland Cement Content: 588 lbs. (Table II-17)
Alkali Content of Cement: 0.82 (from supplier)
Maximum Water Cement Ratio: 0.49 lb water per lb Cement. (Table II-17)
Nominal maximum size aggregate: 1 in (Table II-17)
Air Content: 6% ± 2% (Table II-17)
Slump: 1 – 5 in (Table II-17)
Sp. Gr. of Slag: 2.90 (Specific gravity of slag will vary; therefore, the most current gravity should be obtained from the District Materials Section)
Fineness Modulus of Sand: 2.70 (fine aggr. data sheet)
Sp. Gr. of Fine Aggregate: 2.66 (fine aggr. data sheet)
Sp. Gr. of Coarse Aggregate: 2.61 (coarse aggr. data sheet)
Dry rodded unit weight of C.A.: 104 lb/ft3 (Lab Results)
Sp. Gr. of Cement: 3.15 (from supplier)

Let us now solve for the absolute volume of each material, remembering the total must be 1 yd3 (27.00 ft3) for all materials.

The minimum cement content is 588 lbs.; however, a portion of the cement will be replaced with slag. We need to refer to Section 217.02(a) Table 1 of the Specifications. The alkali content of the cement is 0.82%; therefore, 50% of the cement will be replaced by slag.

1. **Cement:** 294 lbs. (this is equal to 50% of 588 lbs., which is the design weight for cement on Class A3 General Use mixes.)

 \[
 \frac{294 \text{ lbs.}}{3.15 \text{ (sp.gr. of port. cem.) \times 62.4 (weight of 1 ft}^3\text{ of water)}}
 \]

 To find absolute volume:

 \[
 \frac{294}{3.15 \times 62.4} = 1.50 \text{ ft}^3 \text{ (absolute volume)}
 \]

2. **Slag:** 294 lbs. (this is equal to 50% of 588 lbs., which is design weight for cement on Class A3 General use mixes.)

 To find absolute volume:

 \[
 \frac{294 \text{ lbs.}}{2.90 \text{(sp.gr. for this slag)} \times 62.4 \text{ (weight of 1 ft}^3\text{ of water)}} = 1.62 \text{ ft}^3
 \]
3. **Water**: By specifications, the maximum water is 0.49 lb water per lb. cementitious material. For this mix, you would consider the cementitious weight to be: 294 lbs. Cement + 294 lbs. Slag = 588 lbs.

\[
588 \times 0.49 = 288 \text{ lbs.}
\]

To find absolute volume:

\[
\frac{288}{1.00 \times 62.4} = 4.62 \text{ ft}^3 = \text{Absolute Volume}
\]

\[
4.62 \text{ ft}^3 \times 7.5 \text{ (gallons of water in 1 ft}^3\text{)} = 34.6 \text{ gallons}
\]

4. **Air**: The target air content is 6%. To find the absolute volume of air:

\[
0.06 \times 27 \text{ ft}^3 = 1.62 \text{ ft}^3 = \text{Absolute Volume}
\]

As air will not weigh anything, it will not have a specific gravity, so we have solved for the 6% volume displaced by the air in a cubic yard.

5. **Coarse Aggregate**: A factor of 0.68 is obtained from Table A1.5.3.6 of ACI by using the Fineness Modulus of the sand and the nominal maximum size of the coarse aggregate in the method described on Page 3-10. To convert this to volume, we say 0.68 \times 27 \text{ ft}^3 = 18.36 \text{ ft}^3 (this volume is dry rodded). With the dry rodded unit weight given as 104 lb/ft^3, determine the weight of coarse aggregate going into the mix by the following:

\[
18.36 \text{ ft}^3 \times 104 \text{ lb/ft}^3 = 1909 \text{ lbs. (design wt. of C.A.)}
\]

The specific gravity of the coarse aggregate was 2.61. The absolute volume is determined by the following:

\[
\frac{1909 \text{ lbs.}}{2.61 \times 62.4} = 11.72 \text{ ft}^3 = \text{Absolute Volume}
\]

6. **Fine Aggregate**: To solve for the amount of fine aggregate, work the problem in reverse as compared to the other materials. First, total the absolute volume of the other five materials:

<table>
<thead>
<tr>
<th>Material</th>
<th>Design Weight</th>
<th>Absolute Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>294 lbs.</td>
<td>1.50 ft^3</td>
</tr>
<tr>
<td>Slag</td>
<td>294 lbs.</td>
<td>1.62 ft^3</td>
</tr>
<tr>
<td>Water</td>
<td>288 lbs.</td>
<td>4.62 ft^3</td>
</tr>
<tr>
<td>Air</td>
<td>6 %</td>
<td>1.62 ft^3</td>
</tr>
<tr>
<td>Coarse Aggr.</td>
<td>1909 lbs.</td>
<td>11.72 ft^3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>21.08 ft^3</td>
</tr>
</tbody>
</table>
If the five materials total 21.08 ft³, it is proper to assume that the fine aggregate will fill the remaining volume of a cubic yard. To find the volume the fine aggregate will occupy, solve the following:

\[27.00 \text{ ft}^3 - 21.08 \text{ ft}^3 = 5.92 \text{ ft}^3 \]

Now, multiply the volume of fine aggregate times the specific gravity of fine aggregate times 62.4 (unit weight of water):

\[5.92 \text{ ft}^3 \times 2.66 \times 62.4 = 983 \text{ lbs.} \text{ (design weight of fine aggregate)} \]

The Class A3 general use concrete mix utilizing slag will be shown on the TL-27 as follows:

- Cement: 294 lbs.
- Slag: 294 lbs.
- Water: 288 lbs.
- Air: 6 %
- Coarse Aggregate: 1909 lbs.
- Fine Aggregate: 983 lbs.
ACI WORKSHEET

CLASS A3 General MIX DESIGN

MODIFIED WITH 50% blast furnace slag

FINE AGGREGATE
F.M. 2.70
SP. GR. 2.66

COARSE AGGREGATE
DRY RODDED UNIT WT. 104 lb/ft³
SP. GR. 2.61

NOMINAL MAX. SIZE C.A. 1"

TABLE 5.3.6 FACTOR 0.68

OTHER DATA NEEDED FOR SPECIAL DESIGNS Sp.Gr. of Blast Furnace Slag = 2.90

QUANTITY OF COARSE AGGREGATE
TABLE 5.3.6 0.68 X 27 ft³ X UNIT WT. 104 = 1909 lbs.

ABSOLUTE VOLUMES
PORTLAND CEMENT .50 x 588 = 294 lbs. = 1.50 ft³
3.15 x 62.4
WATER .49 x 588 = 288 lbs. = 4.62 ft³
1.00 x 62.4
AIR 6 % x 27 = 1.62 ft³
100
C. AGGR. 1909 lbs. = 11.72 ft³
SP. GR. 2.61 X 62.4

ADDITIONAL MATERIALS
slag 588 - 294 = 294 lbs. = 1.62 ft³
2.90 x 62.4
TOTAL = 21.08 ft³

27.00 ft³
- 21.08 ft³
F.A. 5.92 ft³ X 2.66 SP.GR. X 62.4 = 983 lbs.

SUGGESTED QUANTITIES ±5% TOLERANCE
CEMENT 294 lbs.
WATER 288 lbs. or 34.6 gals.
AIR 6 %
C. AGGR. 1909 lbs. - [_______] + [_______]
F. AGGR. 983 lbs. - [_______] + [_______]
ADDL. MATLS. slag = 294 lbs.
______ =
FLY ASH

Production:

Waste product of coal fired electrical utility

Specifications:

Must meet ASTM C618 Class F with maximum loss on ignition of 6%
Replaces up to 30% of the cement

Reaction:

Reacts with the free lime (calcium hydroxide) given off by cement
during hydration, and water to produce cementitious material.

Advantages:

Utilization of a waste product
Reduces energy for production of cement
Reduces heat of hydration
Improves workability
Improves sulfate resistance
Reduces alkali-silica aggregate reaction
Costs less than cement

Disadvantages:

Another admixture
Scaling and drying shrinkage may be increased
Slower strength gain
Air content difficult to control
 1. Finer than cement
 2. Unburned carbon
ACI Concrete Mix Design Utilizing Fly Ash

When fly ash is utilized as an additive in concrete, it must conform to the requirements of ASTM C618 Class F or Class C, except that the Loss on Ignition shall be limited to a maximum of 6%. Class F, fly ash shall replace 20 to 30% by weight of the design cement depending on the alkali content of the cement used. The minimum total cementitious materials are specified in Table II-17. The method of design is very similar to that used in the previous mix designs in this chapter.

EXAMPLE: Using the ACI worksheet provided, let us design a VDOT Class A3 General mix using fly ash.

Conditions:
Minimum Cement Content: 588 lbs. (Table II-17)
Alkali Content of Cement: 0.65% (from supplier)
Maximum Water-Cement ratio: 0.49 lbs. water per lb. cement (Table II-17)
Nominal Maximum Size Aggregate: 1 in (Table II-17)
Air Content: 6% ± 2% (Table II-17)
Slump: 1 - 5” (Table II-17)
Sp. Gr. of fly ash: 2.25 (Specific gravity of fly ash will vary. The most current gravity from the manufacturer/supplier should be used).
Fineness Modulus of Sand: 2.70 (fine aggr. data sheet)
Sp. Gr. of Fine Aggregate: 2.66 (fine aggr. data sheet)
Sp. Gr. of Coarse Aggregate: 2.61 (coarse aggr. data sheet)
Dry-rodded Unit Weight of C.A.: 104 lb/ft³ (lab results)
Sp.Gr. of Cement: 3.15 (from supplier)

Let us now solve the absolute volume of each material, remembering the total must be 27.00 ft³ for all materials.

The minimum cement content is 588 lbs.; however, a portion of the cement will be replaced with fly ash. We need to refer to Section 217.02(a) Table 1 of the Specifications. The alkali content of the cement is 0.65%; therefore, 20% of the cement will be replaced by fly ash.

1. **Cement**: 470 lbs. (this is equal to 80% of 588 lbs., which is the design wt. of cement of a Class A3 General Mix).

 \[
 \frac{\text{470 lbs. (this is design weight for 1 yd}^3\text{)}}{3.15 \text{ (sp.gr. of cement) } \times 62.4 \text{(weight of 1 ft}^3\text{ of water)}} = 2.39 \text{ ft}^3 \text{ Absolute volume}
 \]

2. **Fly ash**: 118 lbs. (this is equal to 20% of 588 lbs., which is design wt. for cement of a Class A3 General use mix).

 To find absolute volume:

 \[
 \frac{\text{118 lbs.}}{2.25 \text{(sp.gr. for this fly ash)} \times 62.4 \text{(weight of 1 ft}^3\text{ of water)}} = 0.84 \text{ ft}^3
 \]
3. **Water**: By specification, the maximum water is 0.49 lbs. water per lb. cementitious material. For this mix, you would consider the cementitious weight to be 588 lbs. Cement + Fly Ash (470 lbs. + 118 lbs.).

\[
588 \times 0.49 = 288 \text{ lbs.}
\]

To find absolute volume:

\[
\frac{288}{1.00 \times 62.4} = 4.62 \text{ ft}^3 = \text{Absolute volume}
\]

4.62 ft\(^3\) x 7.5 (gallons of water in 1 ft\(^3\)) = 34.6 gallons

4. **Air**: The target air content is 6%. To find the absolute volume of air:

\[
0.06 \times 27.00 \text{ ft}^3 = 1.62 \text{ ft}^3 = \text{Absolute Volume}
\]

As air will not weigh anything, it will not have a specific gravity, so we have solved for the 6% volume displaced by the air a cubic yard.

5. **Coarse Aggregate**: A factor of 0.68 is obtained from Table A1.5.3.6 of ACI by using the Fineness Modulus of the sand and the nominal maximum size of the coarse aggregate as described on Page 3-10. To convert this to volume, 0.68 \times 27.00 \text{ ft}^3 = 18.36 \text{ ft}^3 (this volume is dry rodded). With the dry rodded unit weight given as 104 lb/ft\(^3\), determine the weight of coarse aggregate going into the mix by the following:

\[
18.36 \text{ ft}^3 \times 104 \text{ lb/ft}^3 = 1909 \text{ lbs. (this is the design mass of C.A.)}
\]

The specific gravity of the coarse aggregate was 2.61. The absolute volume is determined by the following:

\[
\frac{1909}{2.61 \times 62.4 (\text{wt. of ft}^3 \text{ of water})} = 11.72 \text{ ft}^3 = \text{Absolute Volume}
\]

6. **Fine Aggregate**: To solve for the amount of fine aggregate, we will work the problem in reverse as compared to the other materials. First, we must total the absolute volume of the other five materials:

<table>
<thead>
<tr>
<th>Material</th>
<th>Design</th>
<th>Absolute Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>470 lbs.</td>
<td>2.39 ft(^3)</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>118 lbs.</td>
<td>0.84 ft(^3)</td>
</tr>
<tr>
<td>Water</td>
<td>288 lbs.</td>
<td>4.62 ft(^3)</td>
</tr>
<tr>
<td>Air</td>
<td>6 %</td>
<td>1.62 ft(^3)</td>
</tr>
<tr>
<td>Coarse Aggr.</td>
<td>1909 lbs.</td>
<td>11.72 ft(^3)</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>21.19 ft(^3)</td>
</tr>
</tbody>
</table>
If the five materials total 21.19 ft³, it is proper to assume that the fine aggregate will fill the remaining volume of a cubic yard. To find the volume the fine aggregate will occupy, solve the following:

27.00 ft³ − 21.19 ft³ = 5.81 ft³

Now, multiply the volume of fine aggregate times the specific gravity of fine aggregate times 62.4 (unit weight of water):

5.81 ft³ x 2.66 x 62.4 = 964 lbs. (design mass of fine aggregate)

The Class A3 general use concrete mix utilizing fly ash will be shown on the TL-27 as follows:

Cement - 470 lbs.
Fly Ash - 118 lbs.
Water - 288 lbs.
Air - 6 %
Coarse Aggregate - 1909 lbs.
Fine Aggregate - 964 lbs.
ACI WORKSHEET
CLASS A3 General MIX DESIGN

MODIFIED WITH 20% Fly Ash

FINE AGGREGATE
P.M. 2.70
SP. GR. 2.66

COARSE AGGREGATE
DRY RODDED UNIT WT. 104 lb/ft^3
SP. GR. 2.61

NOMINAL MAX. SIZE C.A. 1 inch
TABLE 5.3.6 FACTOR 0.68

OTHER DATA NEEDED FOR SPECIAL DESIGNS
Sp.Gr. of Fly Ash = 2.25

QUANTITY OF COARSE AGGREGATE
TABLE 5.3.6 0.68 X 27 ft^3 X UNIT WT. 104 lb/ft^3 = 1909 lbs.

ABSOLUTE VOLUMES
PORTLAND CEMENT
588 x .80 = 470 lbs. = 2.39 ft^3
3.15 x 62.4
WATER (470 + 118 =588)
588 x 0.49 = 288 lbs. = 4.62 ft^3
1.00 x 62.4
AIR
6 % x 27 = 1.62 ft^3
100
C. AGGR.
1909 lbs. = 11.72 ft^3
SP. GR. 2.61 X 62.4
ADDITIONAL MATERIALS
fly ash
588 x 0.20 = 118 lbs. = 0.84 ft^3
2.25 x 62.4
TOTAL = 21.19 ft^3

27.00 ft^3
- 21.19 ft^3
F.A. 5.81 ft^3 X 2.66 SP.GR. X 62.4 = 964 lbs.

SUGGESTED QUANTITIES ±5% TOLERANCE
CEMENT 470 lbs.
WATER 288 lbs. or 34.6 gals.
AIR 6 %
C.A. AGGR. 1909 lbs. - [_______] +[_______]
F. AGGR. 964 lbs. - [_______] + [_______]
ADDL. MATLS. Flyash = 118 lbs.

=
ACI Design Example Problem No.1

Design a Class A4 Post and Rail concrete mix with slag to be used in footing, using coarse and fine aggregate from Lone Star Industries, Dock Street. Dry rodded unit weight of coarse aggregate is 101 lb/ft³. Alkali Content of Cement is 0.67%. Specific gravity of slag is 2.94. Use data sheets page 3-32 and 3-33.

CLASS A4 Post & Rail MIX DESIGN MODIFIED WITH Slag

<table>
<thead>
<tr>
<th>FINE AGGREGATE</th>
<th>COARSE AGGREGATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.M. 2.80</td>
<td>DRY RODDED UNIT WT. 101 lb/ft³</td>
</tr>
<tr>
<td>SP. GR. 2.64</td>
<td>SP. GR. 2.63</td>
</tr>
<tr>
<td>NOMINAL MAX. SIZE C.A. 1/2</td>
<td>TABLE A1.5.3.6 FACTOR 0.55</td>
</tr>
<tr>
<td>OTHER DATA NEEDED FOR SPECIAL DESIGNS</td>
<td>Slag 40% Sp. Gravity 2.94</td>
</tr>
</tbody>
</table>

QUANTITY OF COARSE AGGREGATE

\[
\text{Table A1.5.3.6} \times 0.55 \times 27 \text{ ft}^3 \times \text{UNIT WT.} \times 101 = 1500 \text{ lbs.}
\]

ABSOLUTE VOLUMES

PORTLAND CEMENT

\[
\text{(.40)(635)=254} \quad \frac{635 - 254 = 381}{3.15 \times 62.4} \quad \text{lbs.} = 1.94 \text{ ft}^3
\]

WATER

\[
\text{.45 x 635 = 286 lbs.} \quad = 4.58 \text{ ft}^3 \\
\text{1.00 x 62.4}
\]

AIR

\[
7.0 \% \times 27 = 1.89 \text{ ft}^3/100
\]

C. AGGR.

\[
\frac{1500}{\text{SP.GR. 2.63}} \times 62.4 = 9.14 \text{ ft}^3
\]

ADDITIONAL MATERIALS

\[
\text{.40 x 635 = 254} \quad = 1.38 \text{ ft}^3 \\
\text{2.94 x 62.4}
\]

\[
\text{TOTAL} = 18.93 \text{ ft}^3
\]

\[
27.00 \text{ ft}^3 - 18.93 \text{ ft}^3
\]

F.A.

\[
8.07 \text{ ft}^3 \times 2.64 \text{ SP.GR. X 62.4} = 1329 \text{ lbs.}
\]

SUGGESTED QUANTITIES ± 5% TOLERANCE

- **CEMENT** 381 lbs.
- **WATER** 286 lbs. or 34.3 gals.
- **AIR** 7.0 %
- **C. AGGR.** 1500 lbs. - [_______] + [_______]
- **F. AGGR.** 1329 lbs. - [_______] + [_______]
- **ADDL. MATLS. Slag** = 254 lbs.
ACI Design Example Problem No.2

Design a Class A4 General Use mix to be used in a bridge deck. Coarse and fine aggregate will be obtained from Sadler Materials, Richmond, Va. Make no adjustments for retarder. Dry rodded unit weight of the coarse aggregate is 102 lb/ft3. Alkali content of the cement is 0.72%. Fly ash can be obtained from JTM Industries with a Specific Gravity of 2.35. Use aggregate data sheets page 3-32 and 3-33.

CLASS A4 General MIX DESIGN
MODIFIED WITH Fly Ash

FINE AGGREGATE
P.M. 3.00
SP. GR. 2.64

COARSE AGGREGATE
DRY RODDED UNIT WT. 102 lb/ft3
SP. GR. 2.62

NOMINAL MAX. SIZE C.A. 1”
TABLE A1.5.3.6 FACTOR 0.65

OTHER DATA NEEDED FOR SPECIAL DESIGNS
Fly Ash 20% Replacement
Sp. Gravity 2.35

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 0.65 X 27 ft3 X UNIT WT. 102 = 1790 lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT (.20)(635)=127
635 - 127 = 508 lbs. = 2.58 ft3
3.15 x 62.4

WATER .45 x 635 = 286 lbs. = 4.58 ft3
1.00 x 62.4

AIR 6.5 % x 27 = 1.76 ft3
100

C. AGGR. 1790 lbs. = 10.95 ft3
SP.GR. 2.62 X 62.4

ADDITIONAL MATERIALS .20 x 635 = 127 = 0.87 ft3
2.35 x 62.4

TOTAL = 20.74 ft3

= 27.00 ft3
- 20.74 ft3

F.A. 6.26 ft3 X 2.64 SP.GR. X 62.4 = 1031 lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE
CEMENT 508 lbs.
WATER 286 lbs. or 34.3 gals.
AIR 6.5 %
C. AGGR. 1790 lbs. - [] + []
F. AGGR. 1031 lbs. - [] + []
ADDL. MATLS. Fly Ash = 127 lbs.
ACI Design Example Problem No. 3

Design a Class A4 Post and Rail Concrete modified with slag. Fine aggregate will come from Chickahominy, Inc., Charles City, VA. and coarse aggregate will come from Virginia Traprock, Inc., Leesburg, VA. Dry rodded unit weight of the coarse aggregate is \(100 \text{ lb/ft}^3\). Alkali content of the cement is 0.85%. Specific gravity of slag is 2.94. Use aggregate data sheets on page 3-32 and 3-33.

CLASS _A4 Post and Rail_ MIX DESIGN

FINES AGGREGATE

| F.M. | 2.70 |
| SP. GR. | 2.62 |

COARSE AGGREGATE

| DRY RODDED UNIT WT. | 100 lb/ft3 |
| SP. GR. | 3.04 |

NOMINAL MAX. SIZE C.A. 1/2” TABLE A1.5.3.6 FACTOR .56

OTHER DATA NEEDED FOR SPECIAL DESIGNS 50% Slag (Sp. Gr. = 2.94)

QUANTITY OF COARSE AGGREGATE TABLE A1.5.3.6 .56 x 27 ft3 x UNIT WT. 100 = 1512 lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT (.50)(635)=318 635 - 318 = 317 lbs. = 1.61 ft3

3.15 x 62.4

WATER .45 x 635 = 286 lbs. = 4.58 ft3

1.00 x 62.4

AIR 7% x 27 = 1.89 ft3

100

C. AGGR. 1512 lbs. = 7.97 ft3

SP.GR. 3.04 x 62.4

ADDITIONAL MATERIALS .50 x 635 = 318 = 1.73 ft3

2.94 x 62.4

TOTAL = 17.78 ft3

27.00 ft3

- 17.78 ft3

F.A. 9.22 ft3 x 2.62 SP.GR. X 62.4 = 1507 lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT 317 lbs.

WATER 286 lbs. or 34.3 gals.

AIR 7%

C. AGGR. 1512 lbs. - [_____] + [______]

F. AGGR. 1507 lbs. - [_______] + [_______]

ADDL. MATLS. 50% Slag = 318 lbs.
Design a Class A4 General Use mix to be used in a box culvert using fine and coarse aggregate from West Sand and Gravel, Richmond, Va. Alkali content of the Type I cement is 0.59%. Dry rodded unit weight of the coarse aggregate is 104 lb/ft3. Fly Ash is available from Monex with a specific gravity of 2.25. Use aggregate data sheets on page 3-32 and 3-33.

CLASS A4 General Mix Design Modified with Fly Ash

Fine Aggregate
- F.M. 2.70
- Sp. Gr. 2.64

Coarse Aggregate
- Dry rodded unit wt. 104 lb/ft3
- Sp. Gr. 2.60

Nominal Max. Size C.A. 1”

Table A1.5.3.6 Factor 0.68

Other Data Needed for Special Designs
- Fly Ash 20% Replacement
- Sp. Gravity 2.25

Quantity of Coarse Aggregate

\[
\text{TABLE A1.5.3.6} \times 0.68 \times 27 \text{ ft}^3 \times \text{UNIT WT.} \times 104 = 1909 \text{ lbs.}
\]

Absolute Volumes

Portland Cement

\[
(0.20)(635)=127 \quad 635 - 127 = 508 \text{ lbs.} = \frac{508}{3.15 \times 62.4} = 2.58 \text{ ft}^3
\]

Water

\[
0.45 \times 635 = 286 \text{ lbs.} = \frac{286}{1.00 \times 62.4} = 4.58 \text{ ft}^3
\]

Air

\[
6.5 \% \times 27 = \frac{1.76}{100} \text{ ft}^3
\]

C. Aggr.

\[
1909 \text{ lbs.} = \frac{11.77}{\text{SP.GR.} 2.60} \times 62.4 \text{ ft}^3
\]

Additional Materials

\[
(0.20 \times 635) = 127 \quad 2.25 \times 62.4 \text{ ft}^3
\]

Total

\[
27.00 \text{ ft}^3 - 21.59 \text{ ft}^3 = 5.41 \text{ ft}^3
\]

F.A.

\[
5.41 \text{ ft}^3 \times 2.64 \text{ SP.GR.} \times 62.4 = 891 \text{ lbs.}
\]

Suggested Quantities ± 5% Tolerance

- Cement 508 lbs.
- Water 286 lbs. or 34.3 gals.
- Air 6.5%
- C. Aggr. 1909 lbs. - [] + []
- F. Aggr. 891 lbs. - [] + []
Allowable Field Adjustments

If the quantities calculated by ACI absolute volume method do not give the required workability and consistency in the field, the mix can be adjusted by an allowable interchange of coarse aggregate and fine aggregate. The interchange of coarse aggregate and fine aggregate may vary up to 5 percent (by weight), but neither may be changed more than 5 percent. When an interchange of aggregate is needed, the fine aggregate, normally being of less weight than coarse aggregate, is increased or decreased 5 percent and then the coarse aggregate is changed by an equal volume so the design will be 27 ft3.

For example, when the first load of concrete using the Class A3 general use design (as shown below) arrived on the project, the slump was 2 inches. The contractor desired a higher slump. In order to accomplish this, the surface areas of the aggregate must be decreased as much as is allowable, which will make the mix as coarse as possible and remain within the specification requirements.

Class A3 General Mix Design:

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Cement</td>
<td>588 lbs.</td>
<td>2.67</td>
</tr>
<tr>
<td>Water</td>
<td>288 lbs.</td>
<td>2.61</td>
</tr>
<tr>
<td>Air</td>
<td>6%</td>
<td>2.70</td>
</tr>
<tr>
<td>#57</td>
<td>1965 lbs.</td>
<td>107 lbs/ft3</td>
</tr>
<tr>
<td>F.A.</td>
<td>930 lbs.</td>
<td>3.03</td>
</tr>
</tbody>
</table>

The F.A., being of less weight than the C.A., will be decreased by 5% as follows:

\[
F.A. = \frac{930 \times 0.05}{2.67 \times 62.4} = 47 \text{ lbs.}
\]

Original Wt. of F.A. = 930 lbs.
Less 5% = \[\frac{930 - 47}{930} = 0.05 \text{ lbs.}\]
New Wt. of F.A. = 883 lbs.

The C.A. must then be increased the same volume that the F.A. is decreased so the design will remain 27 ft3. This is accomplished as follows:

\[
47 \text{ lbs. F.A.} / \left[2.67 \times 62.4\right] = 0.28 \text{ ft}^3
\]

0.28 \times [2.61 \text{ (C.A. Sp. Gr.)} \times 62.4] = 46 \text{ lbs. of C.A. to be added}

Original wt. of C.A. #57 = 1965 lbs.
Plus wt. C.A. to be increased = +46 lbs.
Net wt. of C.A. = 2011 lbs.
The adjusted design quantities are:

- Cement: 588 lbs.
- Air: 6%
- Water: 288 lbs.
- #57: 2011 lbs.

After these adjustments are made, the design should be checked to make sure it yields 27.00 ft3

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Calculations</th>
<th>Absolute Volume (ft3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Cement</td>
<td>588 lbs.</td>
<td>$\frac{588}{3.03 \times 62.4}$</td>
<td>3.11</td>
</tr>
<tr>
<td>Air</td>
<td>6%</td>
<td>0.06×27</td>
<td>1.62</td>
</tr>
<tr>
<td>Water</td>
<td>288 lbs.</td>
<td>$\frac{288}{1.00 \times 62.4}$</td>
<td>4.62</td>
</tr>
<tr>
<td>C. A. - #57</td>
<td>2011 lbs.</td>
<td>$\frac{2011}{2.61 \times 62.4}$</td>
<td>12.35</td>
</tr>
<tr>
<td>F. A.</td>
<td>883 lbs.</td>
<td>$\frac{883}{2.67 \times 62.4}$</td>
<td>5.30</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>27.00</td>
</tr>
</tbody>
</table>
Allowable Field Adjustment Example Problem No. 1

The following Class A3 General mix design produced a harsh mix. The contractor desires to reduce the harshness. Show the aggregate adjustments that may be made within the specification requirements.

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight</th>
<th>Sp. Gr.</th>
<th>Unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Cement</td>
<td>588 lbs.</td>
<td>2.64</td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>6.0%</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>288 lbs.</td>
<td>2.62</td>
<td>108 lb/ft³</td>
</tr>
<tr>
<td>F. A.</td>
<td>998 lbs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. A. No. 57</td>
<td>1895 lbs.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOLUTION:

\[
998 \times 0.05 = 50 \text{ lbs.} \quad \text{(This weight must be added to the weight of sand)}
\]

\[
998 + 50 = 1048 \text{ lbs.} \quad \text{(Total weight of sand)}
\]

\[
\frac{50}{2.64 \times 62.4} = 0.30 \text{ ft}^3 \quad \text{0.30} \times 2.62 \times 62.4 = 49 \text{ lbs.}
\]

The weight of C.A. must be decreased by this amount

\[
1895 - 49 = 1846 \text{ lbs.} \quad \text{(Total weight of C.A. due to increase in the sand)}
\]

ADJUSTED MIX DESIGN

- Cement: 588 lbs.
- Air: 6.0%
- Water: 288 lbs.
- F. A.: 1048 lbs.
- C. A. - No. 57: 1846 lbs.
Allowable Field Adjustment Example Problem No. 2

The following Class A3 General mix design produced a slump of 3 inches. The contractor desires a 4” slump. Show the aggregate adjustments that may be made within the specification requirements.

Cement - 470 lbs. F. A. Sp. Gr. - 2.62
Air - 6% F. A. F. M. - 2.70
Water - 288 lbs. C. A. Sp. Gr. - 3.04
F. A. - 1189 lbs. C. A. Unit Wt.- 106 lb/ft³
C. A. No. 57 - 1946 lbs. Cement Alkali Content - 0.65%
Flyash - 118 lbs. Flyash Sp. Gr. - 2.25

SOLUTION:

1189 X 0.05 = 59 lbs. (This weight must be subtracted from the weight of sand)

1189 – 59 = 1130 lbs. (Total weight of sand)

\[
\frac{59}{2.62} = 0.36 \text{ ft}^3 \quad 0.36 \times 3.04 \times 62.4 = 68 \text{ lbs.}
\]

This weight must be added to C.A. weight

1946 + 68 = 2014 lbs. (Total weight of C. A.)

ADJUSTED MIX DESIGN

Cement - 470 lbs.
Air - 6%
Water - 288 lbs.
F. A. - 1130 lbs.
C. A. - No. 57 - 2014 lbs.
Flyash - 118 lbs.

3-30
Allowable Field Adjustment Example Problem No. 3

The following Class A4 General mix design produced a harsh mix. The contractor desires to reduce the harshness. Show the aggregate adjustments that may be made within the specification requirements.

Cement - 381 lbs.
Air - 6.5%
Water - 286 lbs.
F. A. - 1063 lbs.
C. A. No. 57 - 1798 lbs.
Slag - 254 lbs.

F. A. Sp. Gr. - 2.60
F. A. F. M. - 2.93
C. A. Sp. Gr. - 2.67
C. A. Unit Wt. - 96.5 lbs/ft³
Cement Alkali Content - 0.70%

SOLUTION:

1063 X 0.05 = 53 lbs. (This weight must be added to the weight of sand)

1063 + 53 = 1116 lbs. (Total weight of sand)

\[
\frac{53}{2.60 \times 62.4} = 0.33 \text{ ft}^3 \\
0.33 \times 2.67 \times 62.4 = 55.0 \text{ lbs.}
\]

(The weight of C. A. must be decreased by this amount)

1798 - 55 = 1743 lbs. (Total weight of C. A. due to increase in the sand)

ADJUSTED MIX DESIGN

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>381 lbs.</td>
</tr>
<tr>
<td>Air</td>
<td>6.5%</td>
</tr>
<tr>
<td>Water</td>
<td>286 lbs.</td>
</tr>
<tr>
<td>F. A.</td>
<td>1116 lbs.</td>
</tr>
<tr>
<td>C. A. No. 57</td>
<td>1743 lbs.</td>
</tr>
<tr>
<td>Slag</td>
<td>254 lbs.</td>
</tr>
</tbody>
</table>

2011 v1.0
VIRGINIA DEPARTMENT OF TRANSPORTATION
RESULTS OF QUALITY TEST ON COMMERCIAL PRODUCED COARSE AGGREGATES

(THE VALUES THAT FOLLOW ARE TO BE USED FOR TRAINING PURPOSES ONLY. FOR ACTUAL VALUES, REFER TO THE LATEST PUBLISHED LIST.)

<table>
<thead>
<tr>
<th>PRODUCER AND LOCATION</th>
<th>SP. GR.</th>
<th>ABS. (%)</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sadler Materials Richmond, VA</td>
<td>2.62</td>
<td>0.9</td>
<td>37.6</td>
<td>38.0</td>
<td>----</td>
</tr>
<tr>
<td>Lone Star Industries Dock St., Richmond, VA</td>
<td>2.63</td>
<td>0.8</td>
<td>39.2</td>
<td>38.0</td>
<td>34.0</td>
</tr>
<tr>
<td>Fredericksburg Sand & Gravel Fredericksburg, VA</td>
<td>2.64</td>
<td>0.3</td>
<td>37.5</td>
<td>35.5</td>
<td>----</td>
</tr>
<tr>
<td>Virginia Traprock, Inc. Leesburg, VA</td>
<td>3.04</td>
<td>0.4</td>
<td>----</td>
<td>19.1</td>
<td>26.7</td>
</tr>
<tr>
<td>West Sand and Gravel Richmond, VA</td>
<td>2.60</td>
<td>1.0</td>
<td>----</td>
<td>39.3</td>
<td>37.1</td>
</tr>
<tr>
<td>Bull Run Stone Co. Manassas, VA</td>
<td>2.67</td>
<td>1.5</td>
<td>----</td>
<td>14.3</td>
<td>----</td>
</tr>
<tr>
<td>Dillon, E & Co. Swords Creek, VA</td>
<td>2.83</td>
<td>0.4</td>
<td>23.1</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Lone Jack Glasgow, A</td>
<td>2.81</td>
<td>0.3</td>
<td>----</td>
<td>18.9</td>
<td>21.8</td>
</tr>
<tr>
<td>Shenandoah Asphalt Vesuvius, VA</td>
<td>2.59</td>
<td>1.0</td>
<td>----</td>
<td>30.3</td>
<td>39.3</td>
</tr>
</tbody>
</table>
VIRGINIA DEPARTMENT OF TRANSPORTATION

FINE AGGREGATE DATA

(THANK VALUES THAT FOLLOW ARE TO BE USED FOR TRAINING PURPOSES ONLY. FOR ACTUAL VALUES, REFER TO THE LATEST PUBLISHED LIST.)

<table>
<thead>
<tr>
<th>PRODUCER AND LOCATION</th>
<th>SP. GR.</th>
<th>ABS.(%)</th>
<th>F.M.</th>
<th>LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chickahominy, Inc. Charles City, VA</td>
<td>2.62</td>
<td>1.0</td>
<td>2.7</td>
<td>7.9</td>
</tr>
<tr>
<td>Sadler Materials Richmond, VA</td>
<td>2.64</td>
<td>0.5</td>
<td>3.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Fredericksburg Sand & Gravel Fredericksburg, VA</td>
<td>2.62</td>
<td>0.8</td>
<td>2.7</td>
<td>11.9</td>
</tr>
<tr>
<td>Lone Star Industries Dock St., Richmond, VA</td>
<td>2.64</td>
<td>0.6</td>
<td>2.8</td>
<td>5.8</td>
</tr>
<tr>
<td>West Sand and Gravel Richmond, VA</td>
<td>2.64</td>
<td>0.9</td>
<td>2.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Aylett Sand & Gravel Aylett, VA</td>
<td>2.62</td>
<td>0.2</td>
<td>2.9</td>
<td>4.6</td>
</tr>
<tr>
<td>Dillon E. & Co. Swords Creek, VA</td>
<td>2.80</td>
<td>1.1</td>
<td>3.1</td>
<td>13.8</td>
</tr>
<tr>
<td>Stuart M. Perry, Inc. Winchester, VA</td>
<td>2.67</td>
<td>1.0</td>
<td>2.8</td>
<td>9.1</td>
</tr>
<tr>
<td>Wilson Quarries Horsepasture, VA</td>
<td>2.83</td>
<td>0.5</td>
<td>2.8</td>
<td>6.8</td>
</tr>
</tbody>
</table>
Chapter 3
Study Problems

ACI Mix Design Problem No. 1

Design a Class A4 general mix using a Type II cement from Giant Cement Co. with an alkali content of 0.19. Fly Ash, Specific Gravity of 2.35, is available if necessary from Monex Resources, Inc. Coarse aggregate will come from Lone Star Industries, Richmond, VA. Dry rodded unit weight of coarse aggregate is 103 lb/ft3. Fine aggregate will come from West Sand and Gravel, Richmond, VA. Use aggregate data sheets found on page 3-32 and 3-33.

CLASS MIX DESIGN MODIFIED WITH FINE AGGREGATE

<table>
<thead>
<tr>
<th>F.M.</th>
<th>DRY RODDED UNIT WT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP. GR.</td>
<td>SP. GR.</td>
</tr>
<tr>
<td>NOMINAL MAX. SIZE C.A.</td>
<td></td>
</tr>
</tbody>
</table>

OTHER DATA NEEDED FOR SPECIAL DESIGNS

QUANTITY OF COARSE AGGREGATE

TABLE A1.5.3.6 FACTOR

OTHER DATA NEEDED FOR SPECIAL DESIGNS

ABSOLUTE VOLUMES

PORTLAND CEMENT

3.15 x 62.4 lbs. = _____________ ft3

WATER

1.00 x 62.4 lbs. = _____________ ft3

AIR

100% x 27 = _____________ ft3

C. AGGR.

SP.GR._______ x 62.4 Lbs. = _____________ ft3

ADDITIONAL MATERIALS

TOTAL = _____________ ft3

27.00 ft3

- ___________ ft3

F.A._______ ft3 X SP.GR. X 62.4 = _____________ lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT _____________ lbs.

WATER _______ lbs. or _______ gals.

AIR _____________ %

C. AGGR. _____________ Lbs. - [_______] + [_______]

F. AGGR. _____________ Lbs. - [_______] + [_______]

ADDL. MATLS. =

=
ACI Mix Design Problem No. 2

Design a Class A4 general use mix using IP cement from Roanoke. Coarse aggregate will come from Dillon Company, Swords Creek, VA. Fine aggregate will come from Sadler Materials, Richmond, VA. Dry rodded unit weight of the coarse aggregate is 105 lb/ft3. Specific gravity of the IP cement from Roanoke is 3.02. Use aggregate data sheets found on page 3-32 and 3-33.

<table>
<thead>
<tr>
<th>TABLE A1.5.3.6 FACTOR</th>
</tr>
</thead>
</table>

CLASS MIX DESIGN
MODIFIED WITH
FINE AGGREGATE

<table>
<thead>
<tr>
<th>M.F.</th>
<th>DRY RODDED UNIT WT.</th>
<th>SP. GR.</th>
</tr>
</thead>
</table>

COARSE AGGREGATE

<table>
<thead>
<tr>
<th>NOMINAL MAX. SIZE C.A.</th>
<th>TABLE A1.5.3.6 FACTOR</th>
</tr>
</thead>
</table>

OTHER DATA NEEDED FOR SPECIAL DESIGNS

<table>
<thead>
<tr>
<th>QUANTITY OF COARSE AGGREGATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE A1.5.3.6 _________ X 27 ft3 X UNIT WT. _________ = _________ lbs.</td>
</tr>
</tbody>
</table>

ABSOLUTE VOLUMES

<table>
<thead>
<tr>
<th>PORTLAND CEMENT</th>
<th>3.15 x 62.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER</td>
<td>1.00 x 62.4</td>
</tr>
<tr>
<td>AIR</td>
<td>x 27 100</td>
</tr>
<tr>
<td>C. AGGR.</td>
<td>SP.GR. x 62.4</td>
</tr>
<tr>
<td>ADDITIONAL MATERIALS</td>
<td></td>
</tr>
</tbody>
</table>

27.00 ft3

- _________ ft3

F.A._______ ft3 X _________ SP.GR. X 62.4 = _________ lbs.

SUGGESTED QUANTITIES \pm 5% TOLERANCE

CEMENT	
WATER	lbs. or gals.
AIR	%
C. AGGR.	Lbs. - [_______] + [_______]
F. AGGR.	Lbs. - [_______] + [_______]
ADDL. MATLS. =	

2011 v1.0
ACI Mix Design Problem No. 3

Design a Class A4 Post and rail concrete mix using a Type II cement from Lehigh Cement Co. with an alkali content of 0.57. Design the mix with a water cement ratio of 0.43 and the minimum amount of slag required. Coarse aggregate will come from Sadler Materials, Richmond, VA. Dry rodded unit weight of coarse aggregate is 101 lb/ft³. Fine aggregate will come from Chickahominy Inc., Charles City, VA. Specific gravity of the slag is 2.94. Use aggregate data sheets found on page 3-32 and 3-33.

CLASS MIX DESIGN MODIFIED WITH FINE AGGREGATE

FINE AGGREGATE COARSE AGGREGATE
F.M. ___________ DRY RODDED UNIT WT. ___________
SP. GR. ___________ SP. GR. ___________
NOMINAL MAX. SIZE C.A. _______ TABLE A1.5.3.6 FACTOR _______
OTHER DATA NEEDED FOR SPECIAL DESIGNS

QUANTITY OF COARSE AGGREGATE TABLE A1.5.3.6 _______ X 27 ft³ X UNIT WT. _______ = _________ lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT _______ lbs. = _________ ft³
3.15 x 62.4
WATER _______ lbs. = _________ ft³
1.00 x 62.4
AIR _______ % x 27 = _________ ft³
100
C. AGGR. SP.GR. _______ X 62.4 Lbs. = _________ ft³
ADDITIONAL MATERIALS = _________ ft³
= _________ ft³
TOTAL = _________ ft³
27.00 ft³
- _________ ft³
F.A. _______ ft³ X _________ SP.GR. X 62.4 = _________ lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT _____________ lbs.
WATER _________ lbs. or _______ gals.
AIR _____________%
C. AGGR. _________ Lbs. - [_______] + [_______]
P. AGGR. _________ Lbs. - [_______] + [_______]
ADDL. MATLS. _________ = _________

3-36
ACI Mix Design Problem No. 4

Design a Class A4 general concrete mix using Type I cement from Blue Circle Atlantic with an alkali content of 0.32. Fly ash with a specific gravity of 2.35 is available from Monex Resources, Inc. Coarse aggregate will come from Virginia Traprock, Inc. Dry rodded unit weight of the coarse aggregate is 105 lb/ft³. Fine aggregate will come from Sadler Materials. Use aggregate data sheets found on page 3-32 and 3-33.

CLASS MIX DESIGN MODIFIED WITH FINE AGGREGATE

<table>
<thead>
<tr>
<th>F.M.</th>
<th>SP. GR.</th>
<th>NOMINAL MAX. SIZE C.A.</th>
<th>TABLE A1.5.3.6 FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OTHER DATA NEEDED FOR SPECIAL DESIGNS

Table A1.5.3.6

QUANTITY OF COARSE AGGREGATE

Table A1.5.3.6 X 27 ft³ X UNIT WT. = _______ lbs.

ABSOLUTE VOLUMES

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PORTLAND CEMENT</td>
<td>3.15 x 62.4</td>
<td>lbs. = _______ ft³</td>
</tr>
<tr>
<td>WATER</td>
<td>1.00 x 62.4</td>
<td>lbs. = _______ ft³</td>
</tr>
<tr>
<td>AIR</td>
<td>100%</td>
<td>% x 27 = _______ ft³</td>
</tr>
<tr>
<td>C. AGGR.</td>
<td>SP.GR. X 62.4</td>
<td>Lbs. = _______ ft³</td>
</tr>
<tr>
<td>ADDITIONAL MATERIALS</td>
<td></td>
<td>= _______ ft³</td>
</tr>
</tbody>
</table>

TOTAL = _______ ft³

- _______ ft³

F.A. _______ ft³ X SP.GR. X 62.4 = _______ lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

Cement _______ lbs.

Water _______ lbs. or _______ gals.

Air _______ %

C. AGGR. _______ Lbs. - [_______] + [_______]

F. AGGR. _______ Lbs. - [_______] + [_______]

ADDL. MATLS. _______ = _______
Design a Class A4 General mix using Type IS cement from Roanoke with a specific gravity of 3.05. Coarse aggregate will come from Virginia Traprock, Leesburg, VA and fine aggregate will come from Lone Star Industries, Dock St., Richmond, VA. Make no adjustment for retarder. Dry rodded unit weight of the coarse aggregate is 100 lb/ft\(^3\). Use aggregate data sheets found on page 3-32 and 3-33.

CLASS MIX DESIGN MODIFIED WITH FINE AGGREGATE COARSE AGGREGATE

<table>
<thead>
<tr>
<th>F.M.</th>
<th>DRY RODDED UNIT WT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP. GR.</td>
<td>SP. GR.</td>
</tr>
</tbody>
</table>

NOMINAL MAX. SIZE C.A.

TABLE A1.5.3.6 FACTOR

OTHER DATA NEEDED FOR SPECIAL DESIGNS

QUANTITY OF COARSE AGGREGATE

TABLE A1.5.3.6

ABSOLUTE VOLUMES

- **PORTLAND CEMENT**

 \[
 3.15 \times 62.4 = \text{___________ ft}^3
 \]

- **WATER**

 \[
 1.00 \times 62.4 = \text{___________ ft}^3
 \]

- **AIR**

 \[
 100 \times 27 = \text{___________ ft}^3
 \]

- **C. AGGR.**

 \[
 \text{SP.GR.} \times 62.4 = \text{___________ ft}^3
 \]

- **ADDITIONAL MATERIALS**

 \[
 \text{TOTAL} = \text{___________ ft}^3
 \]

 \[
 27.00 \text{ ft}^3
 \]

 \[
 - \text{___________ ft}^3
 \]

 \[
 \text{F.A.} \times \text{SP.GR.} \times 62.4 = \text{___________ lbs.}
 \]

SUGGESTED QUANTITIES ± 5% TOLERANCE

- **CEMENT**

 \[
 \text{___________ lbs.}
 \]

- **WATER**

 \[
 \text{Lbs. or _______ gals.}
 \]

- **AIR**

 \[
 \%
 \]

- **C. AGGR.**

 \[
 \text{Lbs. - [_______] + [_______]}
 \]

- **F. AGGR.**

 \[
 \text{Lbs. - [_______] + [_______]}
 \]

- **ADDL. MATLS.**

 \[
 \text{=}
 \]
ACI Mix Design Problem No. 6

Design a slag modified Class A3 General use mix. Coarse and fine aggregate will come from Sadler Materials, Richmond, Va. Make no adjustment for retarder. Dry rodded unit weight of the coarse aggregate is 99 lb/ft³. Alkali content of the Type II cement is 0.28%. Specific gravity of the slag is 2.94. Use aggregate data sheets found on page 3-32 and 3-33.

CLASS ________________ MIX DESIGN
MODIFIED WITH ________________

F.I.O. ____________________
SP. GR. ____________________
NOMINAL MAX. SIZE C.A. __________

OTHER DATA NEEDED FOR SPECIAL DESIGNS

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 ________ X 27 ft³ X UNIT WT. ________ = ________ lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT

WATER

AIR

C. AGGR.

ADDITIONAL MATERIALS

27.00 ft³

F.A. ________ ft³ X ________ SP.GR. X 62.4 = ________ lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT __________________________ lbs.

WATER ________ lbs. or ________ gals.

AIR __________ %

C. AGGR. ________ Lbs. - [_______] + [_______]

P. AGGR. __________________________ Lbs. - [_______] + [_______]

ADDL. MATLS. ________ = ________
Design a Class A3 Paving mix, modified with slag. Coarse and fine aggregate will come from West Sand and Gravel, Richmond, Va. Make no adjustment for retarder. Dry rodded unit weight of the coarse aggregate is 104 lb/ft³. Specific Gravity of the cement is 2.94. Alkali content of the cement is 0.81%. Use aggregate data sheets found on page 3-32 and 3-33.

Absolute Volumes

- **Portland Cement**

 \[
 3.15 \times 62.4 \times \text{lbs.} = \text{_________ ft}^3
 \]

- **Water**

 \[
 1.00 \times 62.4 \times \text{lbs.} = \text{_________ ft}^3
 \]

- **Air**

 \[
 100 \times \% \times 27 = \text{_________ ft}^3
 \]

- **C. Aggr.**

 \[
 \text{SP.GR.} \times 62.4 \times \text{Lbs.} = \text{_________ ft}^3
 \]

- **Additional Materials**

 \[
 = \text{_________ ft}^3
 \]

\[
\text{TOTAL} = \text{_________ ft}^3
\]

27.00 \text{ ft}^3

- \text{_________ ft}^3

F.A. \text{_________ ft}^3 \times \text{SP.GR.} \times 62.4 = \text{_________ lbs.}

Suggested Quantities

\[
\pm 5\% \text{ TOLERANCE}
\]

- **CEMENT**

 \[
 \text{_________ lbs.}
 \]

- **WATER**

 \[
 \text{_________ lbs. or _______ gals.}
 \]

- **AIR**

 \[
 \%\]

- **C. AGGR.**

 \[
 \text{Lbs.} - [_______] + [_______]
 \]

- **F. AGGR.**

 \[
 \text{Lbs.} - [_______] + [_______]
 \]

- **ADDL. MATLS.**

 \[
 \text{_________} = \text{_________}
 \]
ACI Mix Design Problem No. 8 - Modified With Fly Ash

Design a fly ash modified Class A3 General Use mix. Coarse and fine aggregate will come from Lone Star Industries, Dock St., Richmond, VA. Make no adjustment for retarder. Dry rodded unit weight of the coarse aggregate is 105 lb/ft\(^3\). Specific gravity of fly ash is 2.22. Alkali content of the cement is 0.65%. Use aggregate data sheets found on page 3-32 and 3-33.

CLASS MIX DESIGN MODIFIED WITH

FINE AGGREGATE
 P.M. DRY RODDED UNIT WT.
 SP. GR. SP. GR.

COARSE AGGREGATE
 NOMINAL MAX. SIZE C.A.
 TABLE A1.5.3.6 FACTOR

OTHER DATA NEEDED FOR SPECIAL DESIGNS

QUANTITY OF COARSE AGGREGATE
 TABLE A1.5.3.6 _______ x 27 ft\(^3\) x UNIT WT. _______ = _______ lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT
 _______ lbs. = _______ ft\(^3\)
 3.15 x 62.4

WATER
 _______ lbs. = _______ ft\(^3\)
 1.00 x 62.4

AIR
 _______ \% x 27 = _______ ft\(^3\)
 100

C. AGGR.
 _______ Lbs. = _______ ft\(^3\)
 SP.GR._______ X 62.4

ADDITIONAL MATERIALS
 _______ = _______ ft\(^3\)
 _______ = _______ ft\(^3\)

 TOTAL = _______ ft\(^3\)

 27.00 ft\(^3\)
 - _______ ft\(^3\)

F.A._______ ft\(^3\) x _______ SP.GR. X 62.4 = _______ lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT = _______ lbs.

WATER = _______ lbs. or _______ gals.

AIR = _______

C. AGGR. = _______ Lbs. - [_______] + [_______]

F. AGGR. = _______ Lbs. - [_______] + [_______]

ADDL. MATLS. = _______ = _______
AcI Mix Design Problem No. 9 - Modified With Fly Ash

Design a fly ash modified Class A4 General Use mix. Coarse and fine aggregate will come from Sadler Materials, Richmond, VA. Make no adjustment for retarder. Dry rodded unit weight of the coarse aggregate is 98 lb/ft3. Fly ash has a specific gravity of 2.30. Alkali content of the cement is 0.76%. Use aggregate data sheets found on page 3-32 and 3-33.

<table>
<thead>
<tr>
<th>CLASS MIX DESIGN MODIFIED WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINE AGGREGATE</td>
</tr>
<tr>
<td>P.M.</td>
</tr>
<tr>
<td>SP. GR.</td>
</tr>
<tr>
<td>NOMINAL MAX. SIZE C.A.</td>
</tr>
<tr>
<td>OTHER DATA NEEDED FOR SPECIAL DESIGNS</td>
</tr>
<tr>
<td>QUANTITY OF COARSE AGGREGATE</td>
</tr>
<tr>
<td>TABLE A1.5.3.6 X 27 ft3 X UNIT WT.</td>
</tr>
</tbody>
</table>

Absolute Volumes

- **Portland Cement**

 \[3.15 \times 62.4\] lbs. = \[
\]

- **Water**

 \[1.00 \times 62.4\] lbs. = \[
\]

- **Air**

 \[\frac{100}{27} \times 62.4\] ft3

- **C. Aggr.**

 \[SP.GR. \times 62.4\] Lbs. = \[
\]

- **Additional Materials**

 \[
\]

 TOTAL = \[
\]

27.00 ft3

- \[
\]

- **F.A.**

 \[\times \text{ SP.GR.} \times 62.4 = \[
\]

Suggested Quantities ± 5% Tolerance

- **Cement**

 \[
\]

- **Water**

 \[
\]

- **Air**

 \[
\]

- **C. Aggr.**

 \[
\]

- **P. Aggr.**

 \[
\]

- **Addl. Matls.**

 \[
\]
Design a slag modified Class A4 Post & Rail mix. Coarse aggregate will come from Lone Jack, Glasgow, and fine aggregate will come from Wilson Quarries, Horsepasture. Make no adjustment for retarder. Dry rodded unit weight of the coarse aggregate is 102 lb/ft³. Specific Gravity of the Slag is 2.85. Alkali content of the cement is 0.95%. Use aggregate data sheets found on page 3-32 and 3-33.

CLASS MIX DESIGN MODIFIED WITH

<table>
<thead>
<tr>
<th>FINE AGGREGATE</th>
<th>COARSE AGGREGATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.M.</td>
<td>DRY RODDED UNIT WT.</td>
</tr>
<tr>
<td>SP. GR.</td>
<td>SP. GR.</td>
</tr>
<tr>
<td>NOMINAL MAX. SIZE C.A.</td>
<td>TABLE A1.5.3.6 FACTOR</td>
</tr>
<tr>
<td>OTHER DATA NEEDED FOR SPECIAL DESIGNS</td>
<td></td>
</tr>
</tbody>
</table>

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 ________ X 27 ft³ X UNIT WT. ________ = ________ lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT

3.15 x 62.4 lbs. = ________ ft³

WATER

1.00 x 62.4 lbs. = ________ ft³

AIR

% x 27 = ________ ft³

100

C. AGGR.

SP.GR. ________ X 62.4 Lbs. = ________ ft³

ADDITIONAL MATERIALS

= ________ ft³

= ________ ft³

TOTAL = ________ ft³

27.00 ft³

- ________ ft³

F.A. ________ ft³ X SP.GR. X 62.4 = ________ lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT

WATER lbs. or gals.

AIR %

C. AGGR. Lbs. - [] + []

F. AGGR. Lbs. - [] + []

ADDL. MATLS. = []

= []
ACI Mix Design Adjustment Problem No. 1

The following Class A4 General Use mix design produced a harsh mix. The contractor wants to reduce the harshness. What are the maximum allowable adjustments under VDOT specifications that could be made to reduce the harshness?

Mix Design - One yd³.

Based on SSD Condition

<table>
<thead>
<tr>
<th></th>
<th>lbs.</th>
<th>lbs.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Cement</td>
<td>635</td>
<td>Sand - F. M.</td>
<td>2.80</td>
</tr>
<tr>
<td>Sand</td>
<td>1150</td>
<td>Sand - Sp. Gr.</td>
<td>2.64</td>
</tr>
<tr>
<td>No. 57</td>
<td>1954</td>
<td>CA - Sp. Gr.</td>
<td>3.04</td>
</tr>
<tr>
<td>Water</td>
<td>288</td>
<td>CA - Unit Weight</td>
<td>108 lb/ft³</td>
</tr>
<tr>
<td>Air</td>
<td>6.5 %</td>
<td>IP Cement - Sp. Gr.</td>
<td>3.05</td>
</tr>
</tbody>
</table>

ANSWER

Cement ____________ lbs.

Sand ____________ lbs.

No. 57 ____________ lbs.

Water ____________ lbs.

Air ____________ %
ACI Mix Design Adjustment Problem No. 2

The following Class A3 General Use mix design produced a harsh mix. The contractor wants to reduce the harshness. What are the maximum allowable adjustments under VDOT specifications that could be made to reduce the harshness?

Mix Design - One yd³.

Based on SSD Condition

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount</th>
<th>Description</th>
<th>Spec. Gr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS Cement</td>
<td>588 lbs.</td>
<td>Sand - F. M.</td>
<td>2.70</td>
</tr>
<tr>
<td>Sand</td>
<td>983 lbs.</td>
<td>Sand - Sp. Gr.</td>
<td>2.66</td>
</tr>
<tr>
<td>No. 57</td>
<td>1909 lbs.</td>
<td>CA - Sp. Gr.</td>
<td>2.61</td>
</tr>
<tr>
<td>Water</td>
<td>288 lbs.</td>
<td>CA - Unit Weight</td>
<td>104 lb/ft³</td>
</tr>
<tr>
<td>Air</td>
<td>6.0 %</td>
<td>IS Cement - Sp. Gr.</td>
<td>3.02</td>
</tr>
</tbody>
</table>

ANSWER

Cement___________ lbs.

Sand ____________ lbs.

No. 57___________ lbs.

Water_____________ lbs.

Air _____________ %
ACI Mix Design Adjustment Problem No. 3

The following Class A4 General Use mix design modified with 40% slag produced a harsh mix. The contractor wants to reduce the harshness. What are the maximum allowable adjustments under VDOT specifications that could be made to reduce the harshness?

Mix Design - One yd³.

Based on SSD Condition

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>381 lbs.</td>
<td>Sand - F. M. 2.70</td>
</tr>
<tr>
<td>Sand</td>
<td>1285 lbs.</td>
<td>Sand - Sp. Gr. 2.62</td>
</tr>
<tr>
<td>No. 57</td>
<td>1799 lbs.</td>
<td>CA - Sp. Gr. 3.04</td>
</tr>
<tr>
<td>Water</td>
<td>286 lbs.</td>
<td>CA - Unit Weight 98 lb/ft³</td>
</tr>
<tr>
<td>Air</td>
<td>6.5 %</td>
<td></td>
</tr>
<tr>
<td>Slag</td>
<td>254 lbs.</td>
<td>Slag - Sp. Gr. 2.95</td>
</tr>
</tbody>
</table>

Answer

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>_________ lbs.</td>
</tr>
<tr>
<td>Sand</td>
<td>_________ lbs.</td>
</tr>
<tr>
<td>No. 57</td>
<td>_________ lbs.</td>
</tr>
<tr>
<td>Water</td>
<td>_________ lbs.</td>
</tr>
<tr>
<td>Air</td>
<td>_________ %</td>
</tr>
<tr>
<td>Slag</td>
<td>_________ lbs.</td>
</tr>
</tbody>
</table>
ACI Mix Design Adjustment Problem No. 4

The following Class A3 General Use Mix Design produced a 2 inch slump. The contractor wants a 3 inch slump. What are the maximum allowable adjustments under VDOT specifications that could be made to increase the slump as much as possible?

Mix Design - One yd³

Based on SSD Condition

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight (lbs)</th>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Cement</td>
<td>588</td>
<td>Sand - F. M.</td>
<td>2.80</td>
</tr>
<tr>
<td>Sand</td>
<td>1107</td>
<td>Sand - Sp. Gr.</td>
<td>2.64</td>
</tr>
<tr>
<td>No. 57</td>
<td>1934</td>
<td>CA - Sp. Gr.</td>
<td>2.83</td>
</tr>
<tr>
<td>Water</td>
<td>288</td>
<td>CA - Unit Weight</td>
<td>106.9</td>
</tr>
<tr>
<td>Air</td>
<td>6.0%</td>
<td>IP Cement - Sp. Gr.</td>
<td>3.05</td>
</tr>
</tbody>
</table>

ANSWER

Cement _________ lbs.

Sand _________ lbs.

No. 57 _________ lbs.

Water _________ lbs.

Air _________ %
ACI Mix Design Adjustment Problem No. 5

The following Class A3 General Use Mix Design modified with 20% flyash produced a 3 inch slump. The contractor wants a 4 inch slump. What are the maximum allowable adjustments under VDOT specifications that could be made to increase the slump as much as possible?

Mix Design - One yd³

Based on SSD Condition

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount</th>
<th>Description</th>
<th>Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>470 lbs.</td>
<td>Sand - F. M.</td>
<td>2.80</td>
</tr>
<tr>
<td>Sand</td>
<td>1120 lbs.</td>
<td>Sand - Sp. Gr.</td>
<td>2.83</td>
</tr>
<tr>
<td>No. 57</td>
<td>1863 lbs.</td>
<td>CA - Sp. Gr.</td>
<td>2.62</td>
</tr>
<tr>
<td>Water</td>
<td>288 lbs.</td>
<td>CA - Unit Weight</td>
<td>103 lb/ft³</td>
</tr>
<tr>
<td>Air</td>
<td>6.5 %</td>
<td>Flyash - Sp. Gr.</td>
<td>3.00</td>
</tr>
<tr>
<td>Flyash</td>
<td>118 lbs.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANSWER

Cement___________ lbs.

Sand _____________ lbs.

No. 57___________ lbs.

Water _____________ lbs.

Air _____________%

Flyash _____________ lbs.
ACI Mix Design Adjustment Problem No. 6

The following Class A4 General Use Mix Design produced a 2 inch slump. The contractor wants a 3 inch slump. What are the maximum allowable adjustments under VDOT specifications that could be made to increase the slump as much as possible?

Mix Design - One yd3

Based on SSD Condition

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount</th>
<th>Description</th>
<th>Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS Cement</td>
<td>635 lbs.</td>
<td>Sand - F. M.</td>
<td>2.90</td>
</tr>
<tr>
<td>Sand</td>
<td>1094 lbs.</td>
<td>Sand - Sp. Gr.</td>
<td>2.62</td>
</tr>
<tr>
<td>No. 57</td>
<td>1871 lbs.</td>
<td>CA - Sp. Gr.</td>
<td>2.83</td>
</tr>
<tr>
<td>Water</td>
<td>286 lbs.</td>
<td>CA - Unit Weight</td>
<td>105 lb/ft3</td>
</tr>
<tr>
<td>Air</td>
<td>6.5%</td>
<td>IS Cement - Sp. Gr.</td>
<td>3.02</td>
</tr>
</tbody>
</table>

ANSWER

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>_________ lbs.</td>
</tr>
<tr>
<td>Sand</td>
<td>_________ lbs.</td>
</tr>
<tr>
<td>No. 57</td>
<td>_________ lbs.</td>
</tr>
<tr>
<td>Water</td>
<td>_________ lbs.</td>
</tr>
<tr>
<td>Air</td>
<td>_________ %</td>
</tr>
</tbody>
</table>
ACI WORKSHEET

CLASS ____________ MIX DESIGN
MODIFIED WITH ____________

FINE AGGREGATE COARSE AGGREGATE
F.M. ____________ DRY RODDED UNIT WT. ____________
SP. GR. ____________ SP. GR. ____________

NOMINAL MAX. SIZE C.A. ____________
TABLE A1.5.3.6 FACTOR

OTHER DATA NEEDED FOR SPECIAL DESIGNS

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 ________ x 27 ft³ x UNIT WT. ____________ = ____________ lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT
________________________ lbs. = ____________ ft³
________________________ x 3.15 x 62.4

WATER
________________________ lbs. = ____________ ft³
________________________ x 1.00 x 62.4

AIR
________________________ % x 27 = ____________ ft³
100

C. AGGR.
________________________ Lbs. = ____________ ft³
________________________ x SP. GR. ________ x 62.4

ADDITIONAL MATERIALS
________________________ = ____________ ft³
________________________ = ____________ ft³

TOTAL = ____________ ft³

27.00 ft³
- ____________ ft³

F.A. ________ ft³ x ____________ SP. GR. x 62.4 = ____________ lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT ____________ lbs.
WATER __________________ lbs. or ______ gals.
AIR __________________ %
C. AGGR. __________________ Lbs. - [_______] + [_______]
F. AGGR. __________________ Lbs. - [_______] + [_______]
ADDL. MATLS. ________ =
__________________ =
ACI WORKSHEET

CLASS ________________ MIX DESIGN
MODIFIED WITH______________

FINE AGGREGATE
F.M. ________________
SP. GR. ________________

COARSE AGGREGATE
DRY RODDED UNIT WT.______________
SP. GR.______________

NOMINAL MAX. SIZE C.A. _________
TABLE A1.5.3.6 FACTOR _________

OTHER DATA NEEDED FOR SPECIAL DESIGNS

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 ___________ X 27 ft³ X UNIT WT. ___________ = _______ lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT
3.15 x 62.4 lbs. = ____________ ft³

WATER
1.00 x 62.4 lbs. = ____________ ft³

AIR
% x 27 = ____________ ft³

C. AGGR.
SP.GR._______ X 62.4 Lbs. = ____________ ft³

ADDITIONAL MATERIALS
= ____________ ft³
= ____________ ft³

TOTAL = ____________ ft³

27.00 ft³
- ____________ ft³

F.A.__________ ft³ X ____________ SP.GR. X 62.4 = ____________ lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT ________________ lbs.
WATER _________ lbs. or _______ gals.
AIR ____________________ %

C. AGGR. ________________ Lbs. - [_______] + [_______]

F. AGGR.____________________ Lbs. - [_______] + [_______]

ADDL. MATLS. _________ =
_____________ =
ACI WORKSHEET

CLASS __________________ MIX DESIGN

MODIFIED WITH________________

FINE AGGREGATE

F.M. _______________
SP. GR. _______________

COARSE AGGREGATE

DRY RODDED UNIT WT. _____________
SP. GR. _______________

NOMINAL MAX. SIZE C.A. _______
TABLE A1.5.3.6 FACTOR __________

OTHER DATA NEEDED FOR SPECIAL DESIGNS ________________________________

QUANTITY OF COARSE AGGREGATE

TABLE A1.5.3.6 _________ X 27 ft\(^3\) X UNIT WT. _________ = _______ lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT

3.15 x 62.4

WATER

1.00 x 62.4

AIR

100 x 27

C. AGGR.

SP.GR._______ X 62.4

ADDITIONAL MATERIALS

= _________ ft\(^3\)

TOTAL

= _________ ft\(^3\)

27.00 ft\(^3\)

- _________ ft\(^3\)

F.A._______ ft\(^3\) X _________ SP.GR. X 62.4 = _________ lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT _____________ lbs.

WATER _________ lbs. or _____ gals.

AIR ____________________ %

C. AGGR. _____________ Lbs. - [_______] + [_______]

F. AGGR. _____________ Lbs. - [_______] + [_______]

ADDL. MATLS.__________ =

__________ =