CHAPTER 3
CONSTRUCTION AND TESTING OF SUBGRADE

WHAT IS SUBGRADE?

The top surface of an embankment or cut section, shaped to conform to the typical section upon which the pavement structure and shoulders will be constructed.

Figure 3.1
IMPORTANCE OF SUBGRADE

Heavy trucks and buses are continually loading our pavements. These loads are transmitted through the pavement to the subgrade. In effect, the loads applied to the surface of the pavement are transmitted through the structure, deforming or otherwise destroying the integrity of the subgrade. How the subgrade is going to react under the application of traffic loads is of great concern. As illustrated in Figure 3.2, how the load gets transferred to the subgrade and how the subgrade can handle that load has a strong influence on the overall quality of the pavement. If the pavement is thin as shown in the right hand sketch, the stress imposed by the traffic load through the pavement is distributed over a small area, making for high stresses on the subgrade. If the subgrade is poorly prepared (improper compaction, excessive moisture, etc.) or has a very low strength (such as with highly plastic clays), the subgrade cannot resist these high stresses and ruts will form which could lead to significant damage to the pavement. If the pavement is thick as shown in the left hand sketch, the stress imposed by the traffic load through the pavement is distributed over a large area, making for low stresses on the subgrade. Even if the subgrade is made up of low strength soils such as the highly plastic clays mentioned above, you can still have a good performing pavement because the stress projected through the pavement is lower than it would be with a thin pavement and if the design is done properly, these stresses should be lower than what can be resisted by the subgrade. It is still important to have the subgrade soils properly compacted when a thick pavement is used because rutting can still take place.

As mentioned above, reducing stress can be accomplished by simply building a thicker pavement. This looks great on paper and is practical to a point. But pavement items are very expensive. Optimizing the pavement itself is very important, but there comes a point where this is not practical. Providing a strong subgrade is essential. Increasing the strength of subgrade allows us to use a thinner pavement.

Figure 3.2 - Load Distribution Characteristics of Thick Versus Thin Pavement
A California Bearing Ratio (CBR) test is run on soils to gauge the strength of the subgrade as compared to a dense graded aggregate. CBR is one of the major factors used in pavement design to determine how thick the pavement should be. Since we have chosen a pavement based on certain subgrade conditions, we must have the best subgrade conditions under our pavement for it to perform its job.

To understand the impact of CBR (subgrade strength) on the pavement, let's look at some typical CBR values. A clayey soil generally has a low CBR value (less than 8). Sands are more granular and drain better and will generally have CBR values between 15 and 35. Gravel will have the best CBR values, generally 25 and up. That is why it is suggested to save the best material to cap the subgrade. The higher the CBR of foundation soils you have, the less pavement structure is needed, the more economical the design.

CBR values are also used as criteria for borrow material.
TYPES OF SUBGRADE MATERIALS

The Specifications list three types of material which are acceptable for use as subgrade. Each type has different characteristics and must be dealt with accordingly.

Material in Place - Whenever the roadway will be in a cut section, subgrade will be in original ground. The density of most soils is at approximately 85 to 90 percent of our Standard Proctor density (VTM-1 or VTM-12) in its natural state. Soil in this condition falls short of having the strength to support our pavement structure. In order to achieve our desired strength, these soils must be compacted.

The specifications require that material in place be scarified to a depth of 6 inches for a distance of 2 feet beyond the proposed edges of pavement on each side. This is illustrated in Figure 3.4 on Page 3-5. This requirement applies to both cut and fill sections.

Imported Material - Subgrade material consisting of imported material is called “borrow material”. This material can come from regular excavation from another area in the project, from commercial sources, or from local pits or quarries obtained by the Department or the Contractor.

Placement and compaction of borrow material would follow the same procedures and practices that are used when placing and compacting soil taken from a cut site on the project.

Treated Material in Place - For some soils, simply scarifying and compacting will not produce the desired strength needed to support our pavement. In these cases it can be very cost effective to stabilize the subgrade with lime, cement, fly ash or a combination thereof. This provides a solid foundation for the remainder of the pavement. Stabilized subgrade provides two very important benefits:

Benefits of Soil Stabilization

- Becomes part of pavement structure
- Improves structural integrity of layers placed above it
COMPACTION REQUIREMENTS FOR SUBGRADE

Density Requirements for Subgrade
100% Density for top 6 inches

<table>
<thead>
<tr>
<th>Percent +4 Material</th>
<th>Minimum % Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 50 %</td>
<td>100 %</td>
</tr>
<tr>
<td>51 - 60 %</td>
<td>95 %</td>
</tr>
<tr>
<td>61 - 70 %</td>
<td>90 %</td>
</tr>
</tbody>
</table>

Moisture Requirements for Subgrade
Optimum moisture ± 20%

Why 100% Density at Subgrade
- Promotes uniformity of subgrade
- Greater density improves strength

Where do we obtain 100% Density at Subgrade?

Figure 3.4
Whether subgrade consists of material in place, treated material in place or imported material, it must be compacted to 100% density (95% for soil-lime). Field densities are compared to VTM-1 or VTM-12. When subgrade material contains large quantities of material retained on the No. 4 sieve, use Table 3-1 to determine the minimum required density.

<table>
<thead>
<tr>
<th>Percent +4 Material</th>
<th>Minimum Percent Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 50</td>
<td>100</td>
</tr>
<tr>
<td>51 - 60</td>
<td>95</td>
</tr>
<tr>
<td>61 - 70</td>
<td>90</td>
</tr>
</tbody>
</table>

Table 3-1
SUBGRADE STABILIZATION

The top of subgrade, as with other portions of an embankment, can be stabilized by two primary methods: mechanical and chemical.

<table>
<thead>
<tr>
<th>Mechanical</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling</td>
<td>Cement</td>
</tr>
<tr>
<td>Geotextile</td>
<td>Lime</td>
</tr>
<tr>
<td></td>
<td>Fly Ash</td>
</tr>
<tr>
<td></td>
<td>Lime-Fly Ash</td>
</tr>
<tr>
<td></td>
<td>Cement-Lime</td>
</tr>
<tr>
<td></td>
<td>Salts</td>
</tr>
</tbody>
</table>

Mechanical Stabilization

Mechanical Stabilization - Rolling

Often referred to as Compaction

- Density Increases
- Permeability Decreases
- Compressibility Decreases

In the case of mechanical stabilization, rolling is the simplest and most commonly used method. Appendix E details the various types of rollers available and which type roller works best for certain soils. For subgrade stabilization however, the most commonly used rollers are pneumatic, static steel wheel, and vibratory steel wheel. The results of rolling include increasing density, increasing strength, decreasing permeability and decreasing compressibility.

Mechanical Stabilization - Rolling

Match equipment to soil type

Fine-grained soils – clays and silts

- Sheepsfoot Roller
- Rubber Tire Roller
- Smooth Wheel Roller

Coarse-grained soils – gravels and sands

- Crawler Tractor
- Vibratory Roller
- Rubber Tire Roller
Mechanical Stabilization – Geosynthetics

A method of mechanical stabilization that is gaining popularity throughout the commonwealth is to use Geosynthetics. The types of Geosynthetics that are most likely used for stabilization are geotextiles, geogrids, and geocomposites.

- **Geotextiles** – Consist of synthetic fibers made into flexible, porous fabrics by standard weaving machinery or are matted together in a random nonwoven manner.
- **Geogrids** – Plastics formed into open, gridlike configuration
- **Geocomposites** – A combination of Geosynthetics such as a Geotextile attached to a dimpled plastic sheet used for pavement drainage, or a Geotextile attached to a geogrid.

Geotextiles have been used in roadway construction in Virginia since the early 1970’s, primarily in erosion and siltation control. In the 1980’s, the construction industry began using geosynthetics in earth stabilization applications. The primary benefit of using a geotextile is that you get separation between the poor quality subsoil and the better quality backfill material. An additional benefit of using a geotextile or a geogrid is an increased resistance to spreading by means of the reinforcement. Because of this, the Department can save a substantial amount of money by using geosynthetics to “bridge” soft subgrade areas and reduce or eliminate undercutting. The local District Materials Engineer can give guidance as to the types of materials that can be used and where they can be used.

<table>
<thead>
<tr>
<th>Subgrade Stabilization using Geotextiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Provides separation of soil/aggregate</td>
</tr>
<tr>
<td>- Provides reinforcement of base</td>
</tr>
<tr>
<td>- Placed at subgrade elevation</td>
</tr>
<tr>
<td>- Rolled out and pulled tight – limit wrinkles</td>
</tr>
<tr>
<td>- Seams connected by 2 foot overlap</td>
</tr>
</tbody>
</table>

Geotextiles are the most widely used geosynthetic. In this chapter we will discuss how we use geotextiles at the subgrade and under embankments. The geotextile performs the primary functions of reinforcement and separation when used at the subgrade and on the embankment footprint. Typically the geotextile is placed in the desired area, pulled tight to limit wrinkles, and if at the subgrade, an overlap of 2 feet is provided at the seams. However, to reinforce an embankment, all seams are to be sewn to allow for the tensile stress to be transmitted. It is critical that the correct geotextile is used in the appropriate place, since the properties of various styles will affect the overall performance of the structure.

Geogrids are also becoming more widely used in Virginia. While these can be used to reinforce a subgrade, or an undercut, they are most likely to be used to reinforce a slope or embankment foundation. Careful attention must be paid to the specifications or contract documents for geogrid selection and installation.
Chemical Stabilization

In the case of chemical stabilization, the procedure is to add a chemical that reacts with the soil, changes its physical and/or chemical characteristics and forms a more stable material. The most commonly used methods of chemical stabilization of subgrade soils are listed above. These materials are mixed with the subgrade soils and are allowed a curing period to react with the soil and harden.

Some of these materials (such as lime, lime-fly ash, and salts) can be mixed with water to form a slurry and are then pressure injected into a soil mass to form a stable structure foundation or to stabilize a landslide.

Hydraulic Cement Stabilization

Commonly called “soil cement”, hydraulic cement stabilization is the most widely used method of stabilizing soils. The method is acceptable for a wide variety of soils (See Table 3-2).

Cement is usually added to existing material in place. This is normally done with a self-propelled, self-powered, rotary mixing or tilling machine. The subgrade layer is scarified to the specified depth, cement and water added, and mixed by the same machine in one pass. Other machines which require a separate pass for each operation may be used but are not common.

The amount of cement to add to the soil to achieve the desired results depends on the soil type and is determined in the design phase by performing laboratory testing. Typical cement contents are shown in Table 3-2. This amount of cement can be specified either by weight or by volume. PCA recommends specifying the cement content by weight, however VDOT typically specifies the cement by volume since there are fewer field calculations needed to determine application rate.
CEMENT REQUIREMENTS
(by Soil Type)

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Usual Range in Cement Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent by Volume</td>
</tr>
<tr>
<td>Clean Gravel</td>
<td>5 – 7</td>
</tr>
<tr>
<td>Clean Sand</td>
<td>7 – 9</td>
</tr>
<tr>
<td>Dirty Gravel/Sand</td>
<td>7 – 10</td>
</tr>
<tr>
<td>Silt</td>
<td>8 – 12</td>
</tr>
<tr>
<td>Clay</td>
<td>10 – 14</td>
</tr>
</tbody>
</table>

Table 3-2

When using cement stabilization, the control necessary to ensure that a quality product is produced consists of the following:

FIELD CONTROL OF SOIL CEMENT

1. Application rate
2. Moisture
3. Depth control
4. Compaction
5. Curing

Application Rate

Cement stabilized subgrade is specified as a percentage of cement per unit volume or by unit weight and a depth of manipulation (i.e. 10% cement by volume, 6” depth - 10% cement by weight, 6” depth). Cement can be applied by either using bag cement or bulk loads with the latter being the most common. The application rate depends on the percentage by volume or weight, depth and width of spread. Application rate can be controlled by either a rate per foot basis or a rate per square foot basis. The following nomographs (Pages 3-11 & 3-12) are used to determine the application rate when the cement content is specified as a percentage of weight.

The application rate is determined prior to placement of the cement to ensure that an adequate amount of cement will be spread to achieve the desired percentage of cement. Both the contractor and inspector should be aware of how much cement is to be applied to achieve the desired outcome.
Cement factor conversion chart.
Quantity of cement per unit length for given depth and width

kg/m

130 120 110 100 90 80 70 60 50 40 30 20

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Quantity of cement per unit length for given depth and width of treatment for specified cement contents.
EXAMPLE #1

Given: The plans call for 10% cement by weight, 6” depth. There are two 12 foot lanes. The base aggregate is to extend 1 ft. beyond the edge of pavement on each side. The width to be treated is 1 ft. beyond the edge of the base stone on each side. The Dry Density of the soil to be treated is 112 lb/ft3.

The contractor plans to spread the cement for the entire width in four sections or pulls. The load of cement in question contains 22.5 tons.

Question: How many feet of roadway should this load of cement treat?

Solution:

\[
24 \text{ ft. (Two 12 ft. lanes)} + 2 \text{ ft. (base aggr.)} + 2 \text{ ft. (beyond base)} = 28 \text{ ft. width of treatment}
\]

\[
28 \text{ ft. width of treatment} \div 4 \text{ sections (1/4 width)} = 7 \text{ ft. pulls}
\]

Use the nomograph on Page 3-14 with 112 lb/ft3 and 10% cement. This yields 10.2 lbs. of cement per cubic foot of compacted soil-cement. Then go to nomograph on page 3-15 with 10.2 lbs. of cement per cubic foot of compacted soil-cement, to 6" depth, and 7’ pull width. This yields 36 lbs. of cement per foot per pull.

\[
22.5 \text{ tons } \times 2000 \text{ lbs/ton} = 45,000 \text{ lbs. on this load.}
\]

Since the contractor will make four pulls this figure needs to be quartered to 11,250 lbs. per pull.

\[
11,250 \text{ lbs./pull} \div 36 \text{ lb/ft} = 312.5 \text{ ft. per pull.}
\]

Answer: For the contractor to apply cement at the specified application rate of 10% by weight for 6” depth of treatment; Making four pulls from a 22.5 ton load of cement should cover 312.5 ft. by 28 ft. in width.
Cement factor conversion chart.
Quantity of cement per unit length for given depth and width

- Depth 5 in (125 mm)
- 6 (160)
- 7 (175)
- 8 (200)
- 9 (225)
- 10 (250)
- 11 (275)
- 12 (300)
- 13 (325)
- 14 (350)
- 15 (375)
- 16 (400)
- 17 (425)
- 18 (450)
- 19 (475)
- 20 (500)

Quantity of cement per unit length for given depth and width of treatment for specified cement contents.
EXAMPLE #2

Given: The plans call for 12% cement by volume, 8” depth. Width of treatment is 28 feet. The net weight of the cement in the tanker is 22.5 tons.

Question: How many feet of roadway should this load of cement treat?

Solution: Application Rate = \[\frac{(W_T)(D_T)}{(D_C)(94)}\]

Where

\(W_T\) = Width of Treatment in feet
\(D_T\) = Depth of Treatment in feet
\(D_C\) = Design Cement Content (Volume in Decimal Form)
94 = Unit Weight of Cement in lbs/ft³

Example = \(W_T = 28\) feet
\(D_T = 0.666\) feet (8 inches)
\(D_C = 0.12\) (12% by Volume)

Application Rate = \[\frac{(28\text{ ft.})(0.666\text{ ft.})}{(0.12)(94\text{ lbs/ft}^3)}\]

= \[18.648\text{ ft}^2\] \[11.28\text{ lbs/ft}^3\]

= 210.35 lbs/ft

Application Length = \[\frac{\text{Net Weight of Cement}}{\text{Application Rate}}\]

= \[\frac{22.5\text{ tons} \times 2000\text{ lbs/ton}}{210.35\text{ lbs/ft}}\]

= 45000 lbs.
210.35 lbs/ft

= 214 feet

Answer: A load of 22.5 tons of cement applied at the rate of 12% by volume for 8” depth of treatment should cover 214 ft. by 28 ft. in width.
Moisture

Proper moisture control is crucial with cement treated subgrade. Because of the fine-grained cement, the soil has a tendency to “dry out”. Best results can be obtained when the mixture is brought to optimum or within 20% above optimum of the original soil. The specifications require the mixture have moisture of not less than optimum or more than optimum by 20% above optimum. This is graphically illustrated in Fig. 3.6.

Constant moisture checks are needed. Check the soil moisture prior to applying the cement. The Contractor will use this “beginning” moisture to figure how much water to add to get the material to optimum moisture. In most cases water is added during mixing to bring the soil to the optimum moisture content. Check the moisture after the first pass of the mixer. This way the Contractor can add water if necessary before compaction. Moisture checks should also be run periodically while compacting the mixture to ensure that optimum moisture is maintained throughout the rolling operation. During finishing, maintain moisture by lightly sprinkling the surface with water.

CHECK MOISTURE …
1. Before applying cement
2. After mixing / before rolling
3. With compaction testing

MOISTURE CONTROL

![MOISTURE CONTROL Diagram]

- acceptable moisture range (0 to 20% of optimum)
- recommended moisture range (10 to 20% of optimum)

Figure 3.6
Depth Control

Having the proper depth of treatment is one of the most important factors affecting the final product. Deviation from the specified depth either by an increase or decrease has an effect on the strength of the treated material. (see Fig. 3.7 below) As stated earlier, stabilized subgrade is part of the pavement structure. If the treated depth is less than that specified, we are compromising the pavement’s depth. If the treated depth is greater than that specified, the cement will be dispersed throughout a greater volume and the entire course will be weak.

The general rule of thumb for soil compaction applies here: 8” of loose soil (after mixing) will compact to 6”. This should be checked.

After the material has been compacted and tested for density it must be checked for depth. When material in place is tested the aid of a liquid solution of phenolphthalein in distilled water is needed. This can be obtained from your District Materials Personnel. When the solution comes in contact with cement or lime it turns purple in color. Check the depth of cement by using a pick to dig a hole and, using a medicine dropper, apply the solution to the side of the hole. The purple indicator disappears at the bottom of the cement. A stake placed flat on the ground across the hole and a ruler are used to measure the depth.

EFFECTS OF INCORRECT DEPTH

If plans called for 6” depth and 10% by volume assuming application rate is correct …

- too deep
- JUST RIGHT
- too shallow

![Diagram showing yields for incorrect depth](image)

YIELDS: 8.5% 10% 12%

Figure 3.7
Compaction

8” Loose = 6” Compacted

8” 6”

COMPACATION CRITERIA

- Minimum 100% of maximum theoretical density
- Sufficient number of rollers to achieve density within 4 hours after mixing
- Any portion on which the density is below the specified density by more than 5 lbs/ft3 shall be removed and replaced
- Minimum rate of compaction tests – 1 per ½ mile per width

The Specifications require that soil cement be compacted to 100% of the maximum density. Compaction equipment is subject to the approval of the Engineer. A sufficient number of compaction units should be provided to ensure that the specified level of density and the completion of the compaction of the soil cement section is accomplished within 4 hours from the time water is added to the mixture. The minimum rate of compaction testing is one test per ½ mile for each application width or pass. Any portion on which the density is below the specified density more than 5 lb/ft3 shall be removed and replaced.

Curing

Just as with hydraulic cement concrete, cement stabilized subgrade must be cured to develop the desired strength. Once the grade has been approved the next course may be placed. In order that the grade does not dry out, the specifications require it to be kept moist. This will aid the curing. The contractor may elect to use an asphalt cover material in lieu of moist curing. However, if the next course is not placed within 7 days, it must be protected with an asphalt cover material.
When material may be exposed to freezing temperatures during the first 24 hours of curing, the contractor shall protect the stabilized material from freezing for 7 days or cover the soil-cement surface with the next pavement course within 4 hours after the cement stabilization has been finished as specified.

OTHER SUBGRADE STABILIZATION METHODS

Lime Stabilization

SOIL LIME

- Used in fine-grained soils – clays and silts
- Used in wet soils
- Not appropriate for non-plastic soils – sands and gravels

SOIL LIME

- Reduces plasticity of soils – lowers PI
- Provides cementation
- Helps to “dry” soils
- Improves strength of soils (CBR)
Lime stabilization works very well with fine-grained soils, particularly heavy clays because it changes the plasticity characteristics of the clay. The addition of lime to a wide variety of soils greatly improves its load carrying capacity. It should be noted that although lime can be used with granular soils, you can generally get greater strength gain by using cement for the same money spent to use lime.

SOIL LIME - CONSTRUCTION

1. Application rate
2. Scarify and pulverize soil to required depth
3. Spread lime
4. Spray water and mix
5. Cure
6. Final mixing
7. Compaction

The application rate of the lime will be shown on the plans or can be as directed by the Engineer (generally the District Materials Engineer). The lime may be applied to the partially pulverized material as a slurry or in dry form. Hydrated lime or quicklime can be used. When quicklime is used in a dry form, it is to be applied at the same rate as hydrated lime.

Lime stabilization should be done in stages. In the first stage, the prepared roadbed is scarified to the depth and width required for the stabilized layer. After scarifying, the material is to be partially scarified. The depth of scarification, pulverization and blading should be controlled in such a manner that the surface of the roadbed below the scarified material shall remain undisturbed and conform to the established cross section. Prior to the beginning of stabilization work, material retained on the 3” sieve is to be removed from the roadbed.

If quicklime is slaked to produce a slurry, correction factors need to be applied to make sure the proper amount of lime is being used (see Section 306.03 of the specifications for correction factors).

Lime applied by slurry generally causes less dust problems than using dry lime.

Regardless of the system, the spreading equipment should uniformly distribute the lime without excessive loss. No equipment, except water trucks and equipment used for mixing and spreading, is to travel on the spread lime until mixed.

This process generates a lot of heat and there will be a loss of moisture in the soil. Sufficient water should be added to make sure that the moisture content of the mix at time of compaction is not less than the optimum moisture content of the mix nor more than optimum plus 20 percent of optimum.
Lime and water are mixed throughout the scarified material as thoroughly as practical by using a disc harrow, scarifier tines and blading, or by other approved methods. Spread the mix over the roadway and seal roll with a steel wheel or pneumatic tire roller to retard loss of moisture and allow to cure. Curing is considered completed when a uniform material is produced in which at least 60 percent of the material (except aggregate particles) passes the No. 4 sieve or 24 hours have lapsed since the beginning of mixing, whichever occurs first.

Soil Lime – Cure

Cure up to 24 hours or until at least 60% passes #4 sieve

Final mixing will take place. If a stationary plant is used to mix the soil and lime, the material can be placed, compacted and finished immediately after mixing.

Soil Lime – Compaction

- Same compaction equipment
- 95% density
- Moisture just prior to compaction, optimum to + 20% optimum

Unlike soil-cement mixtures, soil-lime mixtures are compacted to a density of 95 percent of the maximum theoretical density of the mixture determined in accordance with VTM-1 or VTM-12. Final rolling is done with a pneumatic tire roller. Final compaction and finishing must be completed within 12 hours after final mixing.

After finishing of the treated subgrade, no vehicles (except the water truck) will be permitted on the compacted soil-lime mix for a period of 7 days or until the next layer of the pavement structure is placed, whichever is less, to allow for final curing. During the final curing period, the soil-lime mix is lightly sprinkled with water at frequent intervals to prevent drying of the mix. If at the end of 7 days the contractor has not placed the pavement course, the contractor must place liquid asphalt and a cover of fine aggregate on the mix.

Salts

Stabilization of soils have been accomplished with salts such as sodium chloride, calcium chloride, or potassium chloride. This method of subgrade treatment has been successful, but the treated material must be covered quickly or the salt will redissolve. Chloride is very expensive and thus is not a very cost effective method of treatment. Rusting of equipment by this method is also a problem.
Lime/Fly Ash

Fly ash by itself provides no strength gain for soil. However, if lime is added with the fly ash, they will react to provide cementation of the soil.

Lime Cement

In some eastern areas of the state, lime and cement are used together to stabilize soil. The lime is used to dry the silty sands that are virtually saturated, and then cement is added to improve its strength. It is quite expensive, but sometimes may be proven to be cost effective because you aren’t undercutting a good quality material that can give you good strength if dried and treated with cement.

TREATMENT OF UNSUITABLE SUBGRADE MATERIAL

When solid rock is encountered at subgrade, the roadbed must be excavated below the elevation shown on the plans and backfilled in accordance with Road and Bridge Standard RU-1 (606.01). This standard is reprinted at the end of this chapter.

Other unsuitable materials include saturated material, high plasticity clays, or other low CBR material. These must also be undercut and backfilled with approved material.

PROTECTING THE WORK

After subgrade is finished and has been checked and approved, it must be maintained. Any deficiencies in compaction, grade or moisture must be corrected before subsequent layers can be placed. If subgrade becomes eroded or distorted prior to placing subsequent layers, it must be scarified, reshaped and recompressed to the original requirements. If subgrade becomes unstable after placing any or all of the pavement, the unstable area must be undercut and reconstructed properly.

The above is a specification requirement. Having to go back and re-work areas which have been completed is time consuming and costly. The same procedures for grading to drain with embankments also apply to protecting the work at any stage of construction.

TESTING AND INSPECTION OF SUBGRADE

After scarifying and compacting, subgrade must be tested for compaction and checked to ensure a typical cross section and uniform grade before subsequent courses can be placed. The minimum rate of density testing for untreated subgrade material in place is one test per 2000 linear feet of roadway (full width). Before pavement items are placed on subgrade, it must be visually checked for soft spots, depressions, etc. Passing compaction tests don’t necessarily mean subgrade is ready for the pavement. Any deficiencies must be corrected prior to placing subsequent layers.
OBSTRUCTIONS AT SUBGRADE

The materials exposed at subgrade elevation, or in areas that are to receive fill must be visually evaluated to determine if construction operations may proceed. If the materials exposed consist of rock, existing hydraulic cement concrete pavement, existing asphalt concrete pavement or unsuitable materials, these must be handled appropriately.

If solid rock is encountered at subgrade elevation, it must be removed to the depth specified in Standard Drawing, RU-1, Standard Method for Undercutting Rock. The reason that the rock must be removed is to provide for a uniform base upon which to place the pavement. If the pavement is placed on a base that provides irregular support, then the pavement may deform in the areas where there is limited support.

If existing pavements are encountered, depending on where they are relative to the future subgrade elevation, they are handled differently. It also depends on the type of pavement as to how the materials will be handled. The figures on Pages 3-25 and 3-26 describe what to do. It is important to remember that adequate drainage be maintained and that any excess materials are properly handled.

If highly plastic clays, organic materials or very wet materials are encountered at subgrade elevations, these materials must be either removed and replaced or dried out so they can be re-used. The disposition of these types of materials is usually described in the plans.
STANDARD METHODS OF UNDERCUTTING ROCK

VIRGINIA DEPARTMENT OF TRANSPORTATION

SPECIFICATION REFERENCE
303

606.01
TREATMENT OF EXISTING ROADWAY

SECTION 508...

1. Hydraulic Cement Concrete
 A. Broken into pieces and used as rock embankment in accordance with Section 303 or...
 disposed of at locations selected by the contractor and approved by the engineer.

 B. If more than 3 ft. below subgrade may be broken into pieces not more than 18 in. in any dimension sufficiently displaced for drainage and left in the roadway prism.

2. Asphalt Concrete
 A. Removed and used in work as designated on the plans or as directed by the Engineer.

 B. or (when approved) may be disposed of at locations selected by the Contractor.

Demolished in accordance with Section 508

Existing:
Cement Concrete or Asphalt Concrete Pavement

Proposed Pavement

Existing:
Cement Stabilized COURSES

Proposed Pavement

Shall be broken into pieces not more than 18 inches in any dimension, sufficiently displaced from their existing position to allow for adequate drainage, and left in the roadway prism.
Building Embankments over Existing Roadways...

Proposed Pavement

Existing Pavement

Shall be Removed

Proposed Pavement

Existing: Cement Stabilized COURSES (not designated for demolition)

Existing Roadway Shall be scarified to such degree as will permit an ample bond between the old and new material.
CHAPTER 3
Study Questions

1. ______________ is the top surface of the embankment and the foundation for the pavement structure.

2. Subgrade must be scarified for a distance of ______________ beyond the proposed edges of pavement to a depth of ______________ and recompacted to the original requirements.

3. ______________ days after placement of the Cement Stabilized Subgrade the next course of pavement or approved cover material must be applied.

4. True or False. Cement is used with soil or aggregate to make the soil or aggregate more workable.

5. Why is lime used with soil?

6. The tolerance on the optimum moisture content at which aggregate must be compacted is ______________.

7. The tolerance on the optimum moisture content for cement treated subgrade, is ______________.

8. The most common type of geosynthetic used is a ______ ________.

9. True or False. Sewing of embankment stabilization fabric seams is not required.

10. What is the minimum number of tests required for finished subgrade from Station 453+60 to Station 553+60?

11. Cement Stabilized Subgrade has been placed 48 feet in width from Station 392+20 to Station 550+60 with a paver application width of 12 feet. Determine the number of tests required and the density and moisture requirements.
CHAPTER 3
Study Problems

Cement factor conversion chart.
Quantity of cement per unit length for given depth and width

Quantity of cement per unit length for given depth and width of treatment for specified cement contents.
Practice Problem 1

Cement Application Rate

The plans call for 9.5% cement by weight, 6” depth. There are two 12’ lanes. The base aggregate is to extend 1’ beyond the edge of pavement on each side. The width to be treated is 1’ beyond the edge of the base stone on each side. The Dry Density of the soil to be treated is 103.5 lb/ft³.

The contractor plans to spread the cement for the entire width in four sections or pulls. The load of cement in question contains 20.28 tons.

How many feet of roadway should this load of cement treat?

Show your work!
Practice Problem 2

Cement Application Rate

The plans call for 6.5% cement by weight, 7” depth. There are two 10’ lanes. The base aggregate is to extend 1 foot beyond the edge of pavement on each side. The width to be treated is 1 foot beyond the edge of the base stone on each side. The Dry Density of the soil to be treated is 115.5 lb/ft³.

The contractor plans to spread the cement for the entire width in three sections or pulls. The load of cement in question contains 22.2 tons.

How many feet of roadway should this load of cement treat?

Show your work!
Practice Problem 3

Cement Application Rate

The plans call for 12% cement by volume, 6” depth. Width of treatment is 26 feet. The net weight of the cement in the tanker is 23.09 tons.

How many feet of roadway should this load of cement treat?

Show your work!
Practice Problem 4

Cement Application Rate

The plans call for 6.5% cement \textit{by volume}, 6” depth. Width of treatment is 24 feet. The net weight of the cement in the tanker is 22 tons.

How many feet of roadway should this load of cement treat?

\textbf{Show your work!}