APPENDIX D
ANSWERS TO STUDY PROBLEMS

CHAPTER 1

1. **Hydration** is the chemical reaction between water and cement.

2. **Workability** is the property of freshly mixed concrete which is the ease or difficulty in the placing and finishing of concrete.

3. A chemical, such as calcium chloride used to “speed up” the setting time of concrete is **accelerator**.

4. **False set** is a significant loss of plasticity shortly after the concrete is mixed.

5. The time it takes a cement paste to begin hardening is known as **setting time**.

6. A condition at which an aggregate will neither absorb moisture from concrete nor contribute moisture to the mix is **saturated surface dry**.

7. **Set retarder** is a material used for the purpose of delaying the setting time of concrete.

8. **Consistency** is a condition of plastic concrete which relates to its cohesion, wetness, or to flow.

9. **Cement** is the bonding agent used in a concrete mix.

10. The ability of hardened concrete to resist the deterioration caused by weathering, chemicals, and abrasion is known as **durability**.

11. The pH value of water used with cement shall be between 4.5 and 8.5 as found in Section 216.02.

12. Gypsum is added to cement to control **time of set**.

13. List two desirable qualities of hardened concrete: **durability and water tightness (others listed on page 1-1)**.

14. The primary effect of air entrainment in concrete is to improve **freeze thaw resistance**.

15. List two desirable properties of an aggregate: **low absorption and abrasive resistance (others listed on pages 1-6 to 1-8)**.

16. Admixtures shall be dispensed **according to manufacturer recommendations and within an accuracy of +/-3%**.

17. List two principal raw components in the manufacture of cement: **Lime and Silica**.
18. The type of cement which has the highest fineness reading and the highest tricalcium silicate (C3S) composition, both factors in accelerated strength is **Type III**.

19. The void content of identically graded fine aggregates will vary with **particle shape**.

20. **3.15** is the specific gravity of Portland Cement.

21. **Water-cement ratio** has the greatest effect on the strength, durability and water tightness of concrete.

22. If the amount of admixture is constant and the concrete temperature is increased, the entrained air content will **decrease**.

23. A pH value of 6.0 indicates **acidity** and a pH value of 7.5 indicates **alkalinity**.

24. The strength requirements for High Early Strength Portland Cement Concrete shall be obtained in **7 days** as stated in Section **217.08(b)**.

25. In no case shall a vibrator be operated longer than **15** seconds in any one location as stated in Section **316.04(e)**.

26. The specification requirements for the approval to use admixtures in Hydraulic Cement Concrete are found in Section **215.03**.

27. Each batch of concrete shall be delivered to the site of work and discharged within **90 minutes** of the time the cement is introduced into the mixture unless approved otherwise by the Engineer as found in Section **217.09(b)**.

28. According to Section **217.10**, in cold weather, **water and aggregates** may be heated; however, **cement** is not to be heated.

29. Wash water from hydraulic cement concrete mixer operations is permitted to be reused in the concrete mix according to Section **216.02**.
CHAPTER 2

Sieve Analysis - No. 1

Check the following sieve analysis of a sample of natural sand for use in concrete subject to abrasion and determine if it meets Virginia Department of Transportation requirements for Grading “A” Sand. Circle the sieve not passing, if any.

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Cumulative Grams Retained</th>
<th>Cumulative % Retained</th>
<th>% Passing</th>
<th>VDOT Specs. (% Passing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 inch</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>16.6</td>
<td>2.9</td>
<td>97.1</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 8</td>
<td>64.5</td>
<td>11.3</td>
<td>88.7</td>
<td>80-100</td>
</tr>
<tr>
<td>No. 16</td>
<td>214.1</td>
<td>37.4</td>
<td>62.6</td>
<td>50-85</td>
</tr>
<tr>
<td>No. 30</td>
<td>389.2</td>
<td>67.9</td>
<td>32.1</td>
<td>25-60</td>
</tr>
<tr>
<td>No. 50</td>
<td>483.0</td>
<td>84.3</td>
<td>15.7</td>
<td>5-30</td>
</tr>
<tr>
<td>No. 100</td>
<td>543.4</td>
<td>94.8</td>
<td>5.2</td>
<td>0-10</td>
</tr>
<tr>
<td>No. 200</td>
<td>565.0</td>
<td>98.6</td>
<td>1.4</td>
<td>0-3</td>
</tr>
<tr>
<td>Total Wt.</td>
<td>573.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yes __XX__ No _____________

What is the Fineness Modulus? __2.99____

\[
\frac{0.0 + 2.9 + 11.3 + 37.4 + 67.9 + 84.3 + 94.8}{100} = 298.6 = \frac{2.99}{100}
\]
Sieve Analysis - No. 2

Check the following sieve analysis of a sample of natural sand for use in concrete subject to abrasion and determine if it meets Virginia Department of Transportation requirements for Grading "A" Sand. Circle the sieve not passing, if any.

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Cumulative Grams Retained</th>
<th>Cumulative %Retained</th>
<th>%Passing</th>
<th>VDOT Specs. (%Passing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 inch</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>6.9</td>
<td>1.4</td>
<td>98.6</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 8</td>
<td>28.3</td>
<td>5.6</td>
<td>94.4</td>
<td>80-100</td>
</tr>
<tr>
<td>No. 16</td>
<td>34.9</td>
<td>6.9</td>
<td>93.1</td>
<td>50-85</td>
</tr>
<tr>
<td>No. 30</td>
<td>219.2</td>
<td>43.6</td>
<td>56.4</td>
<td>25-60</td>
</tr>
<tr>
<td>No. 50</td>
<td>398.8</td>
<td>79.3</td>
<td>20.7</td>
<td>5-30</td>
</tr>
<tr>
<td>No. 100</td>
<td>482.9</td>
<td>96.0</td>
<td>4.0</td>
<td>0-10</td>
</tr>
<tr>
<td>No. 200</td>
<td>498.1</td>
<td>99.0</td>
<td>1.0</td>
<td>0-3</td>
</tr>
<tr>
<td>Total Wt.</td>
<td>503.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yes _____ No _____ XX _____

What is the Fineness Modulus? _____2.33_____

\[
\frac{0.0 + 1.4 + 5.6 + 6.9 + 43.6 + 79.3 + 96.0}{100} = \frac{232.8}{100} = 2.33
\]
Sieve Analysis - No. 3

Check the following sieve analysis of a sample of natural sand for use in concrete not subject to abrasion and determine if it meets Virginia Department of Transportation requirements for Grading “A” Sand. Circle the sieve not passing, if any.

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Cumulative Grams Retained</th>
<th>Cumulative %Retained</th>
<th>%Passing</th>
<th>VDOT Specs. (%Passing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 inch</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>6.7</td>
<td>1.4</td>
<td>98.6</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 8</td>
<td>54.0</td>
<td>11.3</td>
<td>88.7</td>
<td>80-100</td>
</tr>
<tr>
<td>No. 16</td>
<td>168.6</td>
<td>35.1</td>
<td>64.9</td>
<td>50-85</td>
</tr>
<tr>
<td>No. 30</td>
<td>340.5</td>
<td>70.9</td>
<td>29.1</td>
<td>25-60</td>
</tr>
<tr>
<td>No. 50</td>
<td>407.7</td>
<td>84.9</td>
<td>15.1</td>
<td>5-30</td>
</tr>
<tr>
<td>No. 100</td>
<td>459.1</td>
<td>95.6</td>
<td>4.4</td>
<td>0-10</td>
</tr>
<tr>
<td>No. 200</td>
<td>468.1</td>
<td>97.5</td>
<td>2.5</td>
<td>0-5</td>
</tr>
<tr>
<td>Total Wt.</td>
<td>480.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yes XX No ______________

What is the Fineness Modulus? 2.99

\[
\frac{0.0 + 1.4 + 11.3 + 35.1 + 70.9 + 84.9 + 95.6}{100} = \frac{299.2}{100} = 2.99
\]
CHAPTER 3
ACI MIX DESIGN PROBLEM NO. 1
CLASS A4 MIX DESIGN
MODIFIED WITH Flyash

FINE AGGREGATE
F.M. 2.70
SP. GR. 2.64
NOMINAL MAX. SIZE C.A. 1 inch

COARSE AGGREGATE
DRY RODDED UNIT WT. 103 lb/ft³
SP. GR. 2.63

OTHER DATA NEEDED FOR SPECIAL DESIGNS
Flyash 20% Replacement
TABLE A1.5.3.6 FACTOR 0.68

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 0.68 x 27 ft³ x UNIT WT. 103 - 1891 lbs.

ABSOLUTE VOLUMES
PORTLAND CEMENT .20 x 635 - 127 635 - 127 - 508 lbs. - 2.58 ft³
3.15 x 62.4
WATER .45 x 635 - 286 lbs. - 4.58 ft³
1.00 x 62.4
AIR 6.5 % x 27 - 1.76 ft³
100
C. AGGR. 1891 lbs. - 11.52 ft³
SP.GR. 2.63 x 62.4
ADDITIONAL MATERIALS .20 x 635 - 127 - 0.87 ft³
2.35 x 62.4
TOTAL 21.31 ft³
- 21.31 ft³
F.A. 5.69 ft³ x 2.64 SP.GR. X 62.4 - 937 lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE
CEMENT 508 kg
WATER 286 lbs. or 34.3 gals.
AIR 6.5 %
C. AGGR. 1891 lbs. - [_______] + [_______]
F. AGGR. 937 lbs. - [_______] + [_______]
ADDL. MATLS. Flyash - 127 lbs.
ACI MIX DESIGN PROBLEM NO. 2

CLASS A4 General MIX DESIGN

MODIFIED WITH

FINE AGGREGATE
F.M. _______ 3.0 _______
Sp. Gr. _______ 2.64 _______

COARSE AGGREGATE
DRY RODDED UNIT WT. _______ 105 lb/ft³
Sp. Gr. _______ 2.83 _______

NOMINAL MAX. SIZE C.A. _______ 1 inch _______

OTHER DATA NEEDED FOR SPECIAL DESIGNS
Sp.Gr. of IP 3.02

TABLE A1.5.3.6 FACTOR 0.65

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 0.65 X 27 ft³ X UNIT WT. 105 = 1843 lbs.

ABSOLUTE VOLUMES

IP
PORTLAND CEMENT

<table>
<thead>
<tr>
<th>lbs.</th>
<th>ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td>635</td>
<td>3.02 x 62.4</td>
</tr>
</tbody>
</table>

WATER

|.45 x 635 = 286 lbs. | 1.00 x 62.4 |

AIR

<table>
<thead>
<tr>
<th>% x 27</th>
<th>ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>1.76</td>
</tr>
</tbody>
</table>

C. AGGR.

<table>
<thead>
<tr>
<th>lbs.</th>
<th>ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1843</td>
<td>10.44</td>
</tr>
</tbody>
</table>

SP.GR. 2.83 X 62.4

ADDITIONAL MATERIALS

TOTAL

<table>
<thead>
<tr>
<th>ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.15</td>
</tr>
</tbody>
</table>

F.A. 6.85 ft³ X 2.64 SP.GR. X 62.4 = 1128 lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT

WATER

AIR

C. AGGR.

F. AGGR.

ADDL. MATLS.
ACI MIX DESIGN PROBLEM NO. 3

CLASS A4 Post & Rail MIX DESIGN

MODIFIED WITH Slag

FINE AGGREGATE
F.M. 2.7
SP. GR. 2.62

COARSE AGGREGATE
DRIED RODDED UNIT WT. 101 lb/ft³
SP. GR. 2.62

NOMINAL MAX. SIZE C.A. 1/2 inch

TABLE A1.5.3.6 FACTOR 0.56

OTHER DATA NEEDED FOR SPECIAL DESIGNS Slag 40% Replacement (Sp. Gr. 2.94)
w/c 0.43

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 0.56 X 27 ft³ X UNIT WT. 101 ___ = ___ 1527 ___ lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT .40 x 635 = 254 635 - 254 = 381 lbs. = 1.94 ft³
3.15 x 62.4

WATER .43 x 635 = 273 lbs. = 4.38 ft³
1.00 x 62.4

AIR 7.0 % x 27 = 1.89 ft³
100

C. AGGR. 1527 lbs. = 9.34 ft³
SP.GR. 2.62 X 62.4

ADDITIONAL MATERIALS 40% Slag 635 x .40 = 254 = 1.38 ft³
2.94 x 62.4

TOTAL = 18.93 ft³

- 18.93 ft³

F.A. 8.07 ft³ X 2.62 SP.GR. X 62.4 = 1319 ___ lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT 381 ___ lbs.
WATER 273 lbs. or 32.8 gals.
AIR 7.0 ___ %

C. AGGR. 1527 ___ lbs. - [_____] + [_____]

F. AGGR. 1319 ___ lbs. - [_____] + [_____]

ADDL. MATLS. Slag ___ = 254 lbs.
ACI MIX DESIGN PROBLEM NO. 4 - MODIFIED WITH FLY ASH

CLASS A4 General MIX DESIGN
MODIFIED WITH Fly Ash

FINE AGGREGATE
F.M. 3.0
SP. GR. 2.64

COARSE AGGREGATE
DRY RODDED UNIT WT. 105 lb/ft³
SP. GR. 3.04

NOMINAL MAX. SIZE C.A. 1 inch
TABLE A1.5.3.6 FACTOR 0.65

OTHER DATA NEEDED FOR SPECIAL DESIGNS
Fly Ash 20% Replacement Sp. Gr. 2.35

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 0.65 0.27 ft³ X UNIT WT. 105 = 1843 lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT .20 x 635 = 127 635 - 127 = 508 lbs. = 2.58 ft³
3.15 x 62.4

WATER .45 x 635 = 286 lbs. = 4.58 ft³
1.00 x 62.4

AIR 6.5 % x 27 = 1.76 ft³
100

C. AGGR. 1843 lbs. = 9.72 ft³
SP.GR. 3.04 X 62.4

ADDITIONAL MATERIALS 635 x .20 = 127
2.35 x 62.4
0.87 ft³

TOTAL = 19.51 ft³

27.00 ft³
- 19.51 ft³

F.A. 7.49 ft³ X 2.64 SP.GR. X 62.4 = 1234 lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT 508 lbs.
WATER 286 lbs. or 34.3 gals.
AIR 6.5 %
C. AGGR. 1843 lbs. - [______] + [______]
F. AGGR. 1234 lbs. - [______] + [______]
ADDL. MATLS. Fly Ash = 127 lbs.

=
ACI MIX DESIGN PROBLEM NO. 5

CLASS A4 General MIX DESIGN

MODIFIED WITH

FINE Aggregate
F.M. 2.8
Sp. Gr. 2.64

COARSE Aggregate
Dry Rodded Unit Wt. 100 lb/ft³
Sp. Gr. 3.04

Nominal Max. Size C.A. 1 inch
Table A1.5.3.6 Factor 0.67

Other Data Needed for Special Designs
Is Sp. Gr. 3.05

Quantity of Coarse Aggregate
Table A1.5.3.6 0.67 X 27 ft³ X Unit Wt. 100 = 1809 lbs.

Absolute Volumes

Is
Portland Cement 635 lbs. = 3.34 ft³
3.05 x 62.4

Water .45 x 635 = 286 lbs. = 4.58 ft³
1.00 x 62.4

Air 6.5 % x 27 = 1.76 ft³
100

C. Aggr. 1809 lbs. = 9.54 ft³
Sp. Gr. 3.04 X 62.4

Additional Materials

TOTAL = 19.22 ft³

27.00 ft³
- 19.22 ft³

F.A. 7.78 ft³ X 2.64 Sp. Gr. X 62.4 = 1282 lbs.

Suggested Quantities ± 5% Tolerance

Cement 635 lbs.
Water 286 lbs. or 34.3 gals.
Air 6.5%
C. Aggr. 1809 lbs. - [_______] + [_______]
F. Aggr. 1282 lbs. - [_______] + [_______]
Addl. Matls. = [_______] =
ACI Mix Design Problem No. 6

Class A3 General Mix Design

Modified with Slag

Fine Aggregate
- F.M.: 3.0
- Sp. Gr.: 2.64

Coarse Aggregate
- DRY RODDED UNIT WT.: 99 lb/ft³
- Sp. Gr.: 2.62

Nominal Max. Size C.A.: 1 inch

Other Data Needed for Special Designs
- 40% Slag Replacement (Sp. Gr. 2.94)

Quantity of Coarse Aggregate
- TABLE A1.5.3.6 0.65 X 27 ft³ X UNIT WT. 99 = 1737 lbs.

Absolute Volumes

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>1.80 ft³</td>
</tr>
<tr>
<td>Water</td>
<td>4.62 ft³</td>
</tr>
<tr>
<td>Air</td>
<td>1.62 ft³</td>
</tr>
<tr>
<td>C. Aggr.</td>
<td>10.62 ft³</td>
</tr>
<tr>
<td>Additional Materials</td>
<td>1.28 ft³</td>
</tr>
<tr>
<td>Total</td>
<td>19.94 ft³</td>
</tr>
<tr>
<td>F.A.</td>
<td>1163 lbs.</td>
</tr>
</tbody>
</table>

Suggested Quantities

- Cement: 353 lbs.
- Water: 288 lbs. or 34.6 gals.
- Air: 6.0%
- C. Aggr.: 1737 lbs.
- F. Aggr.: 1163 lbs.

2015 v1.0
ACI MIX DESIGN PROBLEM NO. 7

CLASS A3 Paving MIX DESIGN

MODIFIED WITH Slag

FINE AGGREGATE

F.M. 2.7

SP. GR. 2.64

NOMINAL MAX. SIZE C.A. 1 inch

OTHER DATA NEEDED FOR SPECIAL DESIGNS 50% Slag Replacement (Sp. Gr. 2.94)

QUANTITY OF COARSE AGGREGATE

TABLE A1.5.3.6 0.68 X 27 ft³ X UNIT WT. 104 = 1909 lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT .50 x 564 = 282 564 - 282 = 282 lbs. = 1.43 ft³

3.15 x 62.4

WATER .49 x 564 = 276 lbs. = 4.42 ft³

1.00 x 62.4

AIR 6.0 % x 27 = 1.62 ft³

100

C. AGGR. 1909 lbs. = 11.77 ft³

SP. GR. 2.60 x 62.4

ADDITIONAL MATERIALS 50% Slag 564 x .50 = 282 = 1.54 ft³

2.94 x 62.4

TOTAL = 20.78 ft³

- 20.78 ft³

F.A. 6.22 ft³ X 2.64 SP. GR. X 62.4 = 1025 lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT 282 lbs.

WATER 276 lbs. or 33.1 gals.

AIR 6.0 %

C. AGGR. 1909 lbs. - [_______] + [_______]

F. AGGR. 1025 lbs. - [_______] + [_______]

ADDL. MATLS. Slag = 282 lbs.

_______ =
ACI MIX DESIGN PROBLEM NO. 8 - MODIFIED WITH FLY ASH

CLASS A3 General____ MIX DESIGN

MODIFIED WITH Fly Ash

FINE AGGREGATE
F.M. 2.8
SP. GR. 2.64

COARSE AGGREGATE
DRY RODDED UNIT WT. 105 lb/ft\(^3\)
SP. GR. 2.63

NOMINAL MAX. SIZE C.A. 1 inch

TABLE A1.5.3.6 FACTOR 0.67

OTHER DATA NEEDED FOR SPECIAL DESIGNS
20% Fly Ash Replacement
Sp. Gr. 2.22

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 0.67 x 27 ft\(^3\) x UNIT WT. 105 = 1899 lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT
\[\frac{588 \times 0.80}{3.15 \times 62.4} = \frac{2.39}{\text{ft}^3} \]

WATER
\[\frac{0.49 \times 588=288}{1.00 \times 62.4} = \frac{4.62}{\text{ft}^3} \]

AIR
\[\frac{6.0}{100} \% \times 27 = \frac{1.62}{\text{ft}^3} \]

C. AGGR.
\[\frac{1899}{\text{lbs.}} \times \frac{2.63}{62.4} = \frac{11.57}{\text{ft}^3} \]

ADDITIONAL MATERIALS
\[\frac{588 \times 0.20 = 118}{2.22 \times 62.4} = \frac{0.85}{\text{ft}^3} \]

TOTAL
\[\frac{27.00}{\text{ft}^3} \]

- \[\frac{21.05}{\text{ft}^3} \]

F.A. \[\frac{5.95}{\text{ft}^3} \times \frac{2.64}{\text{Sp.GR.}} \times \frac{62.4}{\text{lb}} = \frac{980}{\text{lbs.}} \]

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT 470 lbs.
WATER 288 kg or 34.6 gals.
AIR 6.0 %
C. AGGR. 1899 lbs.
F. AGGR. 980 lbs.
ADDL. MATLS. Fly Ash = 118 lbs.

2015 v1.0
ACI MIX DESIGN PROBLEM NO. 9 - MODIFIED WITH FLY ASH

CLASS A4 General MIX DESIGN
MODIFIED WITH Fly Ash

FINE AGGREGATE COARSE AGGREGATE

F.M. 3.0 DRY RODDED UNIT WT. 98 lb/ft³
SP. GR. 2.64 SP. GR. 2.62

NOMINAL MAX. SIZE C.A. 1 inch TABLE A1.5.3.6 FACTOR 0.65

OTHER DATA NEEDED FOR SPECIAL DESIGNS 25% Fly Ash Replacement

Sp. Gr. 2.30

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 0.65 X 27 ft³ X UNIT WT. 98 - 1720 lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT .25 x 635 = 159 635 - 159 = 476 lbs. - 2.42 ft³
3.15 x 62.4

WATER .45 x 635 = 286 lbs. - 4.58 ft³
1.00 x 62.4

AIR 6.5 % x 27 - 1.76 ft³
100

C. AGGR. 1720 lbs. - 10.52 ft³
SP. GR. 2.62 X 62.4

ADDITIONAL MATERIALS 635 x .25 = 159 - 1.11 ft³
2.30 x 62.4

TOTAL - 20.39 ft³

27.00 ft³

- 20.39 ft³

F.A. 6.61 ft³ X 2.64 SP.GR. X 62.4 - 1089 lbs.

SUGGESTED QUANTITIES ± 5% TOLERANCE

CEMENT 476 lbs.

WATER 286 lbs. or 34.3 gals.

AIR 6.5 %

C. AGGR. 1720 lbs. - [_______] + [_______]

F. AGGR. 1089 lbs. - [_______] + [_______]

ADDL. MATLS. Fly Ash - 159 lbs.

_________ - _______

D-14 2015 v1.0
ACI MIX DESIGN PROBLEM NO. 10 - MODIFIED WITH SLAG

CLASS A4 Post & Rail Mix Design

MODIFIED WITH Slag

FINE AGGREGATE
DM. 2.80
SP. GR. 2.83

COARSE AGGREGATE
DRY RODDED UNIT WT. 102 lb/ft3
SP. GR. 2.81

NOMINAL MAX. SIZE C.A. $\frac{3}{8}$ inch
TABLE A1.5.3.6 FACTOR 0.55

OTHER DATA NEEDED FOR SPECIAL DESIGNS Slag 50% Replacement (Sp. Gr. 2.85)

QUANTITY OF COARSE AGGREGATE
TABLE A1.5.3.6 0.55 \times 27 ft3 X UNIT WT. 102 lb = 1515 lbs.

ABSOLUTE VOLUMES

PORTLAND CEMENT 635 \times .50 = 318 \times 318 = 317 lbs. = 1.61 \text{ ft}^3
\[\frac{3.15 \times 62.4}{1.00 \times 62.4} \]

WATER \[\frac{.45 \times 635 = 286 \text{ lbs.}}{1.00 \times 62.4} \]

AIR \[\frac{7.0 \% \times 27}{100} \]

C. AGGR. 1515 \text{ lbs.} = \frac{8.64 \text{ ft}^3}{\text{SP.GR. 2.81} \times 62.4}

ADDITIONAL MATERIALS 50% Slag 635 \times .50 = 318 \times 2.85 \times 62.4 = \text{TOTAL} 18.51 \text{ ft}^3

27.00 ft3

- 18.51 ft3

F.A. 8.49 ft3 \times 2.83 P.GR. X 62.4 = 1499 lbs.

SUGGESTED QUANTITIES \pm 5\% TOLERANCE

CEMENT \[\frac{317 \text{ lbs.}}{\text{C. AGGR.}} \]

WATER \[\frac{286 \text{ lbs. or 34.3 \ text{ gals.}}}{\text{A. AIR}} \]

AIR \[\frac{7.0 \text{ \%}}{\text{C. AGGR.}} \frac{1515 \text{ lbs.}}{\text{F. AGGR.}} \frac{1499 \text{ lbs.}}{\text{ADDL. MATLS. Slag 50\% = 318 lbs.}} \]
ACI MIX DESIGN ADJUSTMENT PROBLEM NO. 1

The following Class A4 General Use mix design produced a harsh mix. The contractor wants to reduce the harshness. What are the maximum allowable adjustments under VDOT specifications that could be made to reduce the harshness?

Mix Design - One Cu. Yard
Based on SSD Condition

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Cement</td>
<td>635 lbs.</td>
<td>Sand - F. M.</td>
<td>2.80</td>
</tr>
<tr>
<td>Sand</td>
<td>1150 lbs.</td>
<td>Sand - Sp. Gr.</td>
<td>2.64</td>
</tr>
<tr>
<td>No. 57</td>
<td>1954 lbs.</td>
<td>CA - Sp. Gr.</td>
<td>3.04</td>
</tr>
<tr>
<td>Water</td>
<td>286 lbs.</td>
<td>CA - Unit Weight</td>
<td>108 lb/ft³</td>
</tr>
<tr>
<td>Air</td>
<td>6.5 %</td>
<td>IP Cement - Sp. Gr.</td>
<td>3.05</td>
</tr>
</tbody>
</table>

ANSWERS

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>635 lbs.</td>
</tr>
<tr>
<td>Sand</td>
<td>1208 lbs.</td>
</tr>
<tr>
<td>No. 57</td>
<td>1888 lbs.</td>
</tr>
<tr>
<td>Water</td>
<td>286 lbs.</td>
</tr>
<tr>
<td>Air</td>
<td>6.5% lbs.</td>
</tr>
</tbody>
</table>

CALCULATIONS:

SAND:

\[1150 \times 0.05 = 57.5 \]

\[1150 + 58 = 1208 \]

NO 57:

\[\frac{58}{2.64 \times 62.4} = \frac{58}{164.736} = 0.35 \]

\[0.35 \times 3.04 \times 62.4 = 66.0 \]

\[1954 - 66 = 1888 \]
ACI MIX DESIGN ADJUSTMENT PROBLEM NO. 2

The following Class A3 General Use mix design produced a harsh mix. The contractor wants to reduce the harshness. What are the maximum allowable adjustments under VDOT specifications that could be made to reduce the harshness?

Mix Design - One Cu. Yard
Based on SSD Condition

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
<th>Mix Design</th>
<th>Spec. Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS Cement</td>
<td>588 lbs.</td>
<td>Sand - F. M.</td>
<td>2.70</td>
</tr>
<tr>
<td>Sand</td>
<td>983 lbs.</td>
<td>Sand - Sp. Gr.</td>
<td>2.66</td>
</tr>
<tr>
<td>No. 57</td>
<td>1909 lbs.</td>
<td>CA - Sp. Gr.</td>
<td>2.61</td>
</tr>
<tr>
<td>Water</td>
<td>288 lbs.</td>
<td>CA - Unit Weight</td>
<td>104 lb/ft³</td>
</tr>
<tr>
<td>Air</td>
<td>6.0 %</td>
<td>IS Cement - Sp. Gr.</td>
<td>3.02</td>
</tr>
</tbody>
</table>

ANSWERS

Cement 588 lbs.
Sand 1032 lbs.
No. 57 1860 lbs.
Water 288 lbs.
Air 6.0 %

CALCULATIONS:

SAND:
983 x 0.05 = 49.15
983 + 49 = 1032

NO 57:
\[
\frac{49}{2.66 \times 62.4} = \frac{49}{165.984} = 0.30
\]

0.30 x 2.61 x 62.4 = 49
1909 - 49 = 1860
ACI MIX DESIGN ADJUSTMENT PROBLEM NO. 3

The following Class A4 General Use mix design modified with 40% slag produced a harsh mix. The contractor wants to reduce the harshness. What are the maximum allowable adjustments under VDOT specifications that could be made to reduce the harshness?

Mix Design - One Cu. Yard
Based on SSD Condition

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight</th>
<th>Sand - F. M.</th>
<th>Sand - Sp. Gr.</th>
<th>CA - Sp. Gr.</th>
<th>CA - Unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>381 lbs.</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>1285 lbs.</td>
<td>2.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 57</td>
<td>1799 lbs.</td>
<td>3.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>286 lbs.</td>
<td>98 lb/ft³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>6.5 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slag</td>
<td>254 lbs.</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANSWERS

Cement 381 lbs.
Sand 1349 lbs.
No. 57 1725 lbs.
Water 286 lbs.
Air 6.5 %
Slag 254 lbs.

CALCULATIONS:

SAND: 1285 x 0.05 = 64.25
1285 + 64 = 1349

NO 57: \[
\frac{64}{2.62 \times 62.4} = \frac{64}{163.488} = 0.39
\]
0.39 x 3.04 x 62.4 = 74
1799 - 74 = 1725
ACI MIX DESIGN ADJUSTMENT PROBLEM NO. 4

The following Class A3 General Use Mix Design produced a 2 inch slump. The contractor wants a 3 inch slump. What are the maximum allowable adjustments under VDOT specifications that could be made to increase the slump as much as possible?

Mix Design - One Cu. Yard
Based on SSD Condition

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Unit</th>
<th>Adjusted Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Cement</td>
<td>588 lbs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>1107 lbs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 57</td>
<td>1934 lbs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>288 lbs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>6.0 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANSWERS

Cement _588_ lbs.

Sand _1052_ lbs.

No. 57 _1992_ lbs.

Water _288_ lbs.

Air _6.0_ %

CALCULATIONS:

SAND: 1107 x 0.05 = 55.35

1107 - 55 = 1052

NO 57: \[
\frac{55}{2.64 \times 62.4} = \frac{55}{164.736} = 0.33
\]

0.33 x 2.83 x 62.4 = 58

1934 +58 = 1992
ACI MIX DESIGN ADJUSTMENT PROBLEM NO. 5

The following Class A3 general use mix design modified with 20% flyash produced a 3 inch slump. The contractor wants a 4 inch slump. What are the maximum allowable adjustments under VDOT specifications that could be made to increase the slump as much as possible?

Mix Design - One Cu. Yard
Based on SSD Condition

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>470 lbs.</td>
<td>Sand - F. M. 2.80</td>
</tr>
<tr>
<td>Sand</td>
<td>1120 lbs.</td>
<td>Sand - Sp. Gr. 2.83</td>
</tr>
<tr>
<td>No. 57</td>
<td>1863 lbs.</td>
<td>CA - Sp. Gr. 2.62</td>
</tr>
<tr>
<td>Water</td>
<td>288 lbs.</td>
<td>CA - Unit Weight 103 lb/ft³</td>
</tr>
<tr>
<td>Air</td>
<td>6.0 %</td>
<td></td>
</tr>
<tr>
<td>Flyash</td>
<td>118 lbs.</td>
<td>Flyash - Sp. Gr. 3.00</td>
</tr>
</tbody>
</table>

ANSWERS

Cement 470 lbs.
Sand 1064 lbs.
No. 57 1915 lbs.
Water 288 lbs.
Air 6.0%
Flyash 118 lbs.

CALCULATIONS:

SAND: \[1120 \times 0.05 = 56\]
\[1120 - 56 = 1064\]

NO 57: \[\frac{56}{2.83 \times 62.4} = \frac{56}{176.592} = 0.32\]
\[0.32 \times 2.62 \times 62.4 = 52\]
\[1863 + 52 = 1915\]
ACI MIX DESIGN ADJUSTMENT PROBLEM NO. 6

The following Class A4 general use mix design produced a 2 inch slump. The contractor wants a 3 inch slump. What are the maximum allowable adjustments under VDOT specifications that could be made to increase the slump as much as possible?

Mix Design - One Cu. Yard
Based on SSD Condition

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IS Cement</td>
<td>635 lbs.</td>
<td>Sand - F. M.</td>
</tr>
<tr>
<td>Sand</td>
<td>1094 lbs.</td>
<td>Sand - Sp. Gr.</td>
</tr>
<tr>
<td>No. 57</td>
<td>1871 lbs.</td>
<td>CA - Sp. Gr.</td>
</tr>
<tr>
<td>Water</td>
<td>286 lbs.</td>
<td>CA - Unit Weight</td>
</tr>
<tr>
<td>Air</td>
<td>6.5 %</td>
<td>IS Cement - Sp. Gr.</td>
</tr>
</tbody>
</table>

ANSWERS

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
</tr>
<tr>
<td>Sand</td>
</tr>
<tr>
<td>No. 57</td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Air</td>
</tr>
</tbody>
</table>

CALCULATIONS:

SAND: 1094 x 0.05 = 54.7
1094 -55 = 1039

NO 57: \[
\frac{55}{2.62 \times 62.4} = \frac{55}{163.488} = 0.34
\]
0.34 x 2.83 x 62.4 = 60
1871 + 60 = 1931
CHAPTER 4

MOISTURE PROBLEM NO. 1

A. Given the following information, determine the percent of free moisture in the sand and No. 57.

SAND

Weight of wet sample = 635 grams
Weight of dry sample = 598 grams

NO. 57

Weight of wet sample = 1240 grams
Weight of dry sample = 1220 grams

ABSORPTION

\[
\begin{align*}
\text{Sand} & \quad = \quad 0.6\% \\
\text{No. 57} & \quad = \quad 0.2\%
\end{align*}
\]

Free Moisture: \quad \text{Sand} \quad 5.6\% \quad \text{No. 57} \quad 1.4\%

CALCULATIONS:

\[
\begin{align*}
\text{Sand:} & \quad \begin{array}{c}
635 \\
- \quad 598
\end{array} \\
& \quad \begin{array}{c}
\frac{37}{598} \times 100 = 6.2 \\
- \quad 0.6
\end{array} \\
& \quad 5.6\%
\end{align*}
\]

\[
\begin{align*}
\text{No. 57} & \quad \begin{array}{c}
1240 \\
- \quad 1220
\end{array} \\
& \quad \begin{array}{c}
\frac{20}{1220} \times 100 = 1.6 \\
- \quad 0.2
\end{array} \\
& \quad 1.4\%
\end{align*}
\]
B. Based on the preceding moisture determination, correct the following mix design weights to batch weights or “pull weights” for one cubic yard.

Mix Design - One Cubic Yard
Based on SSD Condition

Batch Quantities

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>635 lbs.</td>
</tr>
<tr>
<td>Sand</td>
<td>1067 lbs.</td>
</tr>
<tr>
<td>No. 57</td>
<td>1835 lbs.</td>
</tr>
<tr>
<td>Water</td>
<td>288 lbs.</td>
</tr>
<tr>
<td>Air</td>
<td>6.5 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Corrected Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>635 lbs.</td>
</tr>
<tr>
<td>Sand</td>
<td>1127 lbs.</td>
</tr>
<tr>
<td>No. 57</td>
<td>1861 lbs.</td>
</tr>
<tr>
<td>Water</td>
<td>202 lbs.</td>
</tr>
<tr>
<td>Air</td>
<td>6.5 %</td>
</tr>
<tr>
<td></td>
<td>24.2 gals.</td>
</tr>
</tbody>
</table>

CALCULATIONS:

- Sand: \(1067 \times 0.056 = 60\)
 \(1067 + 60 = 1127\)
- No. 57: \(1835 \times 0.014 = 26\)
 \(1835 + 26 = 1861\)
- Water: \(60 + 26 = 86\)
 \(288 - 86 = 202\)
 \(202 = 24.2 \text{ gals.}\)
 \(\frac{202}{8.33} = 24.2 \text{ gals.}\)
MOISTURE PROBLEM NO. 2

A. Given the following information, determine the percent of free moisture in the sand and No. 57.

SAND

Weight of wet sample = 628 grams
Weight of dry sample = 582 grams

NO. 57

Weight of wet sample = 1245 grams
Weight of dry sample = 1215 grams

ABSORPTION

Sand = 0.9%
No. 57 = 0.4%

Free Moisture: Sand 7.0% No. 57 2.1%

CALCULATIONS:

Sand: 628
- 582
46

582 x 100 = 7.9
7.9
- 0.9
7.0

No. 57: 1245
- 1215
30

1215 x 100 = 2.5
2.5
- 0.4
2.1
B. Based on the preceding moisture determination, correct the following mix design weights to batch weights or “pull weights” for one cubic yard.

Mix Design - One Cubic Yard
Based on SSD Condition

Batch Quantities

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight</th>
<th>Corrected Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>635 lbs.</td>
<td>635 lbs.</td>
</tr>
<tr>
<td>Sand</td>
<td>1070 lbs.</td>
<td>1145 lbs.</td>
</tr>
<tr>
<td>No. 57</td>
<td>1840 lbs.</td>
<td>1879 lbs.</td>
</tr>
<tr>
<td>Water</td>
<td>286 lbs.</td>
<td>172 lbs.</td>
</tr>
<tr>
<td>Air</td>
<td>6.0 %</td>
<td>6.0 %</td>
</tr>
</tbody>
</table>

CALCULATIONS:

Sand: \[1070 \times 0.070 = 75\]
\[1070 + 75 = 1145\]

No. 57: \[1840 \times 0.021 = 39\]
\[1840 + 39 = 1879\]

Water: \[75 + 39 = 114\]
\[286 - 114 = 172\]
\[172 = 20.6 \text{ gals.}\]
MOISTURE PROBLEM NO. 3

A. Given the following information, determine the percent of free moisture in the sand and No. 57.

SAND

Weight of wet sample = 621 grams
Weight of dry sample = 580 grams

NO. 57

Weight of wet sample = 1362 grams
Weight of dry sample = 1343 grams

ABSORPTION

Sand = 0.7%
No. 57 = 0.4%

Free Moisture: Sand 6.4% No. 57 1.0%

CALCULATIONS:

Sand: \[
\begin{array}{c}
621 \\
-580
\end{array}
\] \[
\begin{array}{c}
41 \\
580 \times 100 = 7.1
\end{array}
\] \[
\begin{array}{c}
7.1 \\
-0.7
\end{array}
\] \[
\begin{array}{c}
6.4
\end{array}
\]

No. 57: \[
\begin{array}{c}
1362 \\
-1343
\end{array}
\] \[
\begin{array}{c}
19 \\
1343 \times 100 = 1.4
\end{array}
\] \[
\begin{array}{c}
1.4 \\
-0.4
\end{array}
\] \[
\begin{array}{c}
1.0
\end{array}
\]
B. Based on the preceding moisture determination, correct the following mix design weights to batch weights or “pull weights” for four cubic yards.

Mix Design - One Cubic Yard
Based on SSD Condition

Batch Quantities

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>635 lbs.</td>
<td>Cement</td>
</tr>
<tr>
<td>Sand</td>
<td>1070 lbs.</td>
<td>Sand</td>
</tr>
<tr>
<td>No. 57</td>
<td>1840 lbs.</td>
<td>No. 57</td>
</tr>
<tr>
<td>Water</td>
<td>286 lbs.</td>
<td>Water</td>
</tr>
</tbody>
</table>

Air 7.0 %

CALCULATIONS:

Sand:

\[1070 \times 0.064 = 68\]

\[(1070 + 68) \times 4 = 4552\]

No. 57:

\[1840 \times 0.010 = 18\]

\[(1840 + 18) \times 4 = 7432\]

Water:

\[68 + 18 = 86\]

\[(286 - 86) \times 4 = 800\]

\[800 = 96.0 \text{ gals.} \]

\[8.33\]

Cement:

\[635 \times 4 = 2540\]
CHAPTER 5

1. Before any concrete is batched, the producer’s technician should determine that there is an approved mix design at the plant.

2. The required weighing accuracy for cement is 1 percent.

3. Aggregates arriving at a plant by truck are acceptable for use if they are accompanied by a statement of certification.

4. Hopper and cement scales for batching concrete materials must be serviced by a Private Scale Company.

5. Aggregates should be handled and stockpiled in such a manner as to minimize segregation.

6. The required weighing accuracy for aggregate is 2 percent.

7. The minimum and maximum limits of volume of concrete which can be mixed in a mixer are 15 percent - 110 percent.

8. The loader should remain 12 inches from the ground while removing material if stockpiles are built on the ground.
CHAPTER 6

1. **Producer’s Technician** is responsible for designing the Concrete Mix.

2. **Producer’s Technician** is responsible for assuring that concrete components are certified or approved.

3. **District Concrete Technician** is responsible for conducting the performance tests, such as yield tests.

4. Making the moisture correction for aggregate is the responsibility of the **Producer’s Technician**.

5. Setting all the dials, gauges, scales, and meters at the batch plant is the responsibility of the **Producer’s Technician**.
CHAPTER 7

1. What is the first step in a deck repair?
 Defining the repair problem

2. What are typical causes of deterioration of concrete?
 Corrosion of Reinforcement
 Freezing and Thawing Damage
 Alkali-Silica Reaction

3. What causes corrosion of reinforcement?
 Chlorides
 Water
 Thin Concrete Cover

4. Why is corrosion of reinforcement a problem?
 Causes cracks and delaminations

5. Why is poor drainage a problem?
 Water and salt ponds on the surface
 Accelerates deterioration of concrete
 Promotes frost damage

6. What causes freeze thaw deterioration?
 Low air content in concrete
 Water expands 9.1% when it freezes

7. Why is alkali silica reaction a problem?
 Alkali cement reacts with silica aggregates forming a gel around aggregates
 Gel absorbs water and swells
 Expanding gel cracks concrete

8. How do you locate deteriorated concrete caused by corrosion of reinforcement?
 Chain drag
 Half cell potential measurements
 Chloride content measurements
9. How do you remove concrete prior to patching?
 Mark perimeter
 Saw cut perimeter
 Pneumatic hammers

10. Patching can be done with what materials?
 Ready mixed concrete
 Prepackaged patching materials

11. True or False. Patching should include adequate clearance under the reinforcement, saturated surface dry surface, and the use of an internal vibrator.
 True

12. When should white, pigmented liquid membrane curing material be applied?
 Just before the surface dries

13. How much does typical bridge deck concrete shrink in one to two years?
 Approximately 1 inch per 100 feet of length

14. Concrete gains strength the fastest at what temperature?
 90°F

15. What information is needed to use the evaporation rate nomograph?
 Air temperature
 Relative humidity
 Concrete temperature
 Wind speed

16. What materials do we use to fill cracks?
 High molecular weight methacrylate
 Epoxy
 Urethane

17. Hydraulic cement concrete overlays should be placed on what type surface?
 Shot blasted and saturated surface dry
18. What type hydraulic cement concrete overlays are used in Virginia?
 Latex-modified
 Silica fume

19. Epoxy overlays should be placed on what type surface?
 Shot blasted and dry

20. Epoxy test patches are constructed and tested to verify what is acceptable?
 Materials
 Surface preparation
 Batching, mixing and placing materials
CHAPTER 8

1. What are the duties of a Hydraulic Cement Concrete Field Inspector?
 To insure that construction operations produce the results called for by the plans and specifications

2. What daily records must the Hydraulic Cement Concrete Field Inspector keep?
 Date, location of the work, weather conditions, test results, equipment in use, equipment idle, source of materials, and production records

3. What is a Certified Concrete Field Technician responsible for at the project site?
 Quality control of concrete work

4. What is the purpose of inspection?
 To keep the Engineer informed as to the progress and the manner in which the work is progressing

5. What are the qualifications of an inspector?
 Knowledge, common sense, observational skills and courtesy

6. What is a good relationship of an Inspector with the Contractor?
 The inspector should be friendly, but firm and impartial in making decisions

7. Should an inspector know what testing is required at both the concrete plant and on the road?
 Yes

8. What safety equipment should be used during road construction?
 Hard hats, steel toed shoes, gloves, safety vests, protective clothing, safety glasses or anything else necessary to assure worker safety

9. Between the following pairs of documents, which one has priority?

 Special Provision Copied Notes or Plans
 Plans or Special Provisions
 Specifications or Plans

 Special Provision Copied Notes
 Special Provisions
 Plans
CHAPTER 9

1. When transporting concrete to the job site, how much water can be withheld and added after concrete arrives on the site?

One gallon per cubic yard

2. True. All forms must be mortar tight, sufficiently rigid, and oiled or wetted down before concrete placing.

3. The conditions which are most conducive to causing plastic shrinkage cracks are high winds and low humidity.

4. Exploration of the sub-foundation to determine its adequacy is done by the Contractor.

5. All forms must be treated with approved coating material or water.

6. It is permissible to use reinforcing steel bars with mill scale on them.

7. Proper use of vibrator involves vibrating vertically at regular intervals.

8. Before placing concrete on a surface, the surface should be oiled or wetted.

9. During cold weather concreting, the surface on which the concrete is to be placed should not be less than 40°F.

10. The Contractor is responsible for removing and replacing concrete injured by frost action or freezing.

11. On a given day, if the air temperature was 60°F; relative humidity 40%; surface temperature of the plastic concrete 75°F and the wind velocity is 15 m/h, the Surface Evaporation Rate for Plastic Concrete on concrete bridge deck would be 0.25 lb/ft²/h.

12. The requirements for heating water, aggregates and cement in cold weather are water and aggregates 150°F max; cement shall not be heated.

13. In hot weather, all efforts should be made to place the concrete at or below the air temperature.

14. Reinforcing steel bars, except those to be placed in vertical mats, shall be tied at every intersection where the spacing is more than 12 inches in any direction as found in Section 406.03(d).

15. When control cylinders are being used to determine removal of formwork from a deck slab, the minimum compressive strength of the deck slab is 60% f’c as found in Section 404.03(j).

16. The requirements for the protection of reinforcing steel bars are found in Section 406.03(b).
17. Once concrete has begun to set in the finished surface, it shall not be disturbed or walked upon for a minimum of 24 hours as stated in Section 404.03(l)2.

18. Concrete may be permitted to freely drop a maximum of 1.5 m (5 ft.) as stated in Section 404.03(c).

19. Forms can be removed from a stem footer when the minimum compressive strength of the footer is 30% f'c as found in Section 404.03.

20. In splicing a reinforcing bar, the minimum allowable length of lap is 30 times the bar diameter as found in Section 406.03(e).
Calculations for Concrete Plant Study Problem

1. Cement Weight Calculation (Line A 38-41)
 635 lbs. (from TL-27) x 8 cubic yards = 5,080 lbs. of cement for 8 cubic yards

2. Sand, SSD Weight Calculation (Line A 46-50)
 946 lbs. (from TL-27) x 8 cubic yards. = 7,568 lbs. of sand for 8 cubic yards

 7,568 lbs. of sand for 8 cubic yards x .06 (% Free Moisture of Sand Expressed as a decimal) = 454.1 lbs. of free water = 454 lbs. (rounded to nearest whole lb.)

4. Coarse Aggregate (No. 57), SSD Weight Calculation (Line A 60-64)
 1,922 lbs. (From TL-27) x 8 cubic yards = 15,376 lbs. of Coarse Aggregate for 8 cubic yards

5. Coarse Aggregate (No. 57), Free Water Calculation (Line A 65-67)
 15,376 lbs. of C.A. (No. 57) for 8 yd3 X .002 (% Free Moist. of C.A. expressed as a decimal) = 30.8 lbs. of free water = 31 lbs. (Rounded to nearest whole lb.)

6. Total Allowable Water (Line B 13-16)
 32.5 gals. (From TL-27) x 8 cubic yards = 260.0 gals. for 8 cubic yards

 NOTE: All water on Line A is in pounds, but all water on Line B is in gallons.

7. Water Added at Plant (Line B 20-23)
 454 lbs. of free water in sand (Line A 51-53)
 + 31 lbs. of free water in coarse aggregate (No. 57) (Line A 65-67)
 485 lbs. of free water in sand and coarse aggregate

 The pounds of free water in the sand and coarse aggregate from Line A must be converted to gallons. One gallon of water weighs 8.33 lbs.

 485
 8.33 = 58.2 gals. of free water in sand and coarse aggregate (rounded to nearest tenth)

 1 gallon of water per cubic yard is being withheld at the concrete plant on each 8 yd3 load.

 1 gal. per cubic yard x 8 cubic yards = 8.0 gals. of water withheld on each 8 yd3 load

 The 58.2 gals. of free water in the sand and coarse aggregate goes into the mix with this material and becomes part of the mixing water and therefore must be subtracted from the total allowable water. Also, the 8 gals. of water withheld at the plant must be subtracted from the total allowable water.
58.2 gals. of free water in the sand and coarse aggregate
+ 8.0 gals. of water withheld per load at the concrete plant
66.2 gals. of water to be subtracted from the total allowable water

260.0 gals. of total allowable water (Line B 13-16)
- 66.2 gals. of free water in sand and C.A. plus 8 gals. per load withheld at plant
193.8 gals. of water added at plant (Line B 20-23)

8. A. E. Admixture (Line B 31-34)
5.0 oz. (From TL-27) x 8.0 cubic yards = 40.0 oz. for 8 cubic yards

9. Retarding Admixture (Line B 38-41)
25.0 oz. (From TL-27) x 8 cubic yards = 200.0 oz. for 8 cubic yards
Notice of Shipment of Concrete Cylinder

FORM TL-13

VIRGINIA DEPARTMENT OF TRANSPORTATION
MATERIALS DIVISION

<table>
<thead>
<tr>
<th>ROUTE</th>
<th>CO.</th>
<th>SECT.</th>
<th>TYPE</th>
<th>PROJECT NUMBER</th>
<th>PLANT</th>
<th>LOAD</th>
<th>DATE TAKEN</th>
<th>FIRST CYLINDER</th>
<th>SECOND CYLINDER</th>
<th>THIRD CYLINDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
</tbody>
</table>

Class of Concrete: A3 General

Submitted by: [PROJECT INSPECTORS NAME]

Note: The form includes fields for additional details which are not shown in the image.